cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258899 E.g.f.: 2 - exp(2) + Sum_{n>=1} 2^n * exp(x^n) / n!.

Original entry on oeis.org

1, 2, 6, 10, 42, 34, 786, 130, 17058, 81154, 545346, 2050, 102457218, 8194, 1141636866, 72648608770, 648648065538, 131074, 111258180895746, 524290, 40892974286411778, 229774078552113154, 28890711351291906, 8388610, 3552178288049960329218, 34469355651846669074434
Offset: 0

Views

Author

Paul D. Hanna, Jun 20 2015

Keywords

Comments

Conjecture: the sequence a(n) taken modulo a positive integer k is eventually periodic with the period dividing phi(k). For example, the sequence taken modulo 11 is [1, 2, 6, 10, 9, 1, 5, 9, 8, 7, 10, 4, 6, 10, 7, 1, 0, 9, 5, 8, 3, 4, 6, 10, 7, 1, 0, 9, 5, 8, 3, 4, 6, 10, 7, 1, 0, 9, 5, 8, 3, ...] with an apparent period of 10 (= phi(11)) starting at n = 11. - Peter Bala, Aug 03 2025

Examples

			E.g.f.: A(x) = 1 + 2*x + 6*x^2/2! + 10*x^3/3! + 42*x^4/4! + 34*x^5/5! + 786*x^6/6! +...
where
A(x) = 2 - exp(2) + 2*exp(x) + 2^2*exp(x^2)/2! + 2^3*exp(x^3)/3! + 2^4*exp(x^4)/4! + 2^5*exp(x^5)/5! +...
A(x) = 2 - exp(1) + exp(2*x) + exp(2*x^2)/2! + exp(2*x^3)/3! + exp(2*x^4)/4! + exp(2*x^5)/5! +...
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(`if`(n=0, 1, n!*add(2^d/(d!*(n/d)!), d in divisors(n))), n = 0..25); # Peter Bala, Aug 04 2025
  • PARI
    {a(n) = local(A=1); A = 2-exp(2) + sum(m=1,n,2^m/m!*exp(x^m +x*O(x^n))); if(n==0,1, n!*polcoeff(A,n))}
    for(n=0,30, print1(a(n),", "))
    
  • PARI
    {a(n) = local(A=1); A = 2-exp(1) + sum(m=1,n,1/m!*exp(2*x^m +x*O(x^n))); if(n==0,1, n!*polcoeff(A,n))}
    for(n=0,30, print1(a(n),", "))

Formula

E.g.f.: 2 - exp(1) + Sum_{n>=1} exp(2*x^n) / n!.
For n >= 1, a(n) = Sum_{d divides n} 2^d * n!/(d!*(n/d)!). - Peter Bala, Aug 04 2025