A258880
E.g.f. satisfies: A(x) = Integral 1 + A(x)^3 dx.
Original entry on oeis.org
1, 6, 540, 184680, 157600080, 270419925600, 816984611467200, 3971317527112003200, 29097143353353192480000, 305823675529741700675520000, 4435486895868663971869188480000, 86036822683997062842122964537600000, 2175352015640142857526698650779456000000
Offset: 0
E.g.f.: A(x) = x + 6*x^4/4! + 540*x^7/7! + 184680*x^10/10! + 157600080*x^13/13! + 270419925600*x^16/16! +...
where Series_Reversion(A(x)) = x - x^4/4 + x^7/7 - x^10/10 + x^13/13 - x^16/16 +...
-
terms = 13;
A[_] = 0;
Do[A[x_] = Integrate[1 + A[x]^3, x] + O[x]^k // Normal, {k, 1, 3 terms}];
DeleteCases[CoefficientList[A[x], x] Range[0, 3 terms - 2]!, 0] (* Jean-François Alcover, Jul 25 2018 *)
-
{a(n) = local(A=x); A = serreverse( sum(m=0,n, (-1)^m * x^(3*m+1)/(3*m+1) ) +O(x^(3*n+2)) ); (3*n+1)!*polcoeff(A,3*n+1)}
for(n=0,20,print1(a(n),", "))
-
/* E.g.f. A(x) = Integral 1 + A(x)^3 dx.: */
{a(n) = local(A=x); for(i=1,n+1, A = intformal( 1 + A^3 + O(x^(3*n+2)) )); (3*n+1)!*polcoeff(A,3*n+1)}
for(n=0,20,print1(a(n),", "))
A258901
E.g.f. satisfies: A(x) = Integral 1 + A(x)^4 dx.
Original entry on oeis.org
1, 24, 32256, 285272064, 8967114326016, 735868743566229504, 130778914961055994085376, 44390350317502907443360825344, 26290393222157669992962395876622336, 25377887922329300948014930852183837507584, 37855568618678541873143615775486954119570128896
Offset: 0
E.g.f.: A(x) = x + 24*x^5/5! + 32256*x^9/9! + 285272064*x^13/13! + 8967114326016*x^17/17! + 735868743566229504*x^21/21! +...
where Series_Reversion(A(x)) = x - x^5/5 + x^9/9 - x^13/13 + x^17/17 +...
Also, A(x) = S(x)/C(x) where
S(x) = x - 6*x^5/5! - 1764*x^9/9! - 7700616*x^13/13! - 147910405104*x^17/17! - 8310698364852576*x^21/21! +...+ A258900(n)*x^(4*n+1)/(4*n+1)! +...
C(x) = 1 - 6*x^4/4! - 1764*x^8/8! - 7700616*x^12/12! - 147910405104*x^16/16! - 8310698364852576*x^20/20! +...+ A258900(n)*x^(4*n)/(4*n)! +...
such that C(x)^4 + S(x)^4 = 1.
-
nmax=20; Table[CoefficientList[InverseSeries[Series[Integrate[1/(1+x^4),x],{x,0,4*nmax+1}],x],x][[4*n-2]] * (4*n-3)!, {n,1,nmax+1}] (* Vaclav Kotesovec, Jun 18 2015 *)
-
/* E.g.f. Series_Reversion( Integral 1/(1+x^4) dx ): */
{a(n) = local(A=x); A = serreverse( intformal( 1/(1 + x^4 + O(x^(4*n+2))) ) ); (4*n+1)!*polcoeff(A,4*n+1)}
for(n=0,20,print1(a(n),", "))
-
/* E.g.f. A(x) = Integral 1 + A(x)^4 dx.: */
{a(n) = local(A=x); for(i=1,n+1, A = intformal( 1 + A^4 + O(x^(4*n+2)) )); (4*n+1)!*polcoeff(A,4*n+1)}
for(n=0,20,print1(a(n),", "))
A258927
E.g.f. satisfies: A(x) = Integral 1 + A(x)^6 dx.
Original entry on oeis.org
1, 720, 410572800, 4492717498368000, 348990783113936240640000, 118162808964225967251573964800000, 130226468530398571130647349959852032000000, 384446125794905598149974467971605129718661120000000, 2644398446216951886577241780697447635225293650237849600000000
Offset: 0
E.g.f.: A(x) = x + 720*x^7/7! + 410572800*x^13/13! + 4492717498368000*x^19/19! +...
where Series_Reversion(A(x)) = x - x^7/7 + x^13/13 - x^19/19 + x^25/25 +...
Also, A(x) = S(x)/C(x) where
S(x) = x - 120*x^7/7! - 21859200*x^13/13! - 131273353728000*x^19/19! +...+ A258926(n)*x^(6*n+1)/(6*n+1)! +...
C(x) = 1 - 120*x^6/6! - 21859200*x^12/12! - 131273353728000*x^18/18! +...+ A258926(n)*x^(6*n)/(6*n)! +...
such that C(x)^6 + S(x)^6 = 1.
-
/* E.g.f. Series_Reversion( Integral 1/(1+x^6) dx ): */
{a(n) = local(A=x); A = serreverse( intformal( 1/(1 + x^6 + O(x^(6*n+2))) ) ); (6*n+1)!*polcoeff(A, 6*n+1)}
for(n=0, 20, print1(a(n), ", "))
-
/* E.g.f. A(x) = Integral 1 + A(x)^6 dx.: */
{a(n) = local(A=x); for(i=1, n+1, A = intformal( 1 + A^6 + O(x^(6*n+2)) )); (6*n+1)!*polcoeff(A, 6*n+1)}
for(n=0, 20, print1(a(n), ", "))
A259112
E.g.f. satisfies: A(x) = Integral 1 + A(x)^7 dx.
Original entry on oeis.org
1, 5040, 76281004800, 37626350120206848000, 185657801986983855655526400000, 5150422429203073500358041285476352000000, 569512147150397429576160463881863910421954560000000, 199607288101583292042564550150623446229209414764068864000000000
Offset: 0
-
{a(n) = local(A=x); A = serreverse( intformal( 1/(1 + x^7 + O(x^(7*n+2))) ) ); (7*n+1)!*polcoeff(A, 7*n+1)}
for(n=0, 20, print1(a(n), ", ")) \\ after Paul D. Hanna
A259113
E.g.f. satisfies: A(x) = Integral 1 + A(x)^8 dx.
Original entry on oeis.org
1, 40320, 18598035456000, 474009962689446543360000, 170149872975531014630262649651200000, 442695618409212548301531680485487369256960000000, 5620045472937667963281036681944526735620775198955929600000000
Offset: 0
-
{a(n) = local(A=x); A = serreverse( intformal( 1/(1 + x^8 + O(x^(8*n+2))) ) ); (8*n+1)!*polcoeff(A, 8*n+1)}
for(n=0, 20, print1(a(n), ", ")) \\ after Paul D. Hanna
A258971
E.g.f.: A'(x) = 1 + A(x)^5, with A(0)=1.
Original entry on oeis.org
1, 2, 10, 130, 2330, 54770, 1591690, 55065250, 2209888250, 100922263250, 5167670934250, 293215490277250, 18260340583516250, 1238269550334211250, 90824251513716786250, 7164531681653318001250, 604824006980892825496250, 54406894886223009690031250
Offset: 0
A(x) = 1 + 2*x + 10*x^2/2! + 130*x^3/3! + 2330*x^4/4! + 54770*x^5/5! + ...
A'(x) = 2 + 10*x + 65*x^2 + 1165*x^3/3 + 27385*x^4/12 + 159169*x^5/12 + ...
1 + A(x)^5 = 2 + 10*x + 65*x^2 + 1165*x^3/3 + 27385*x^4/12 + 159169*x^5/12 + ...
-
nmax=20; Subscript[a,0]=1; egf=Sum[Subscript[a,k]*x^k, {k,0,nmax+1}]; Table[Subscript[a,k]*k!, {k,0,nmax}] /.Solve[Take[CoefficientList[Expand[1+egf^5-D[egf,x]],x],nmax]==ConstantArray[0,nmax]][[1]]
-
{a(n) = local(A=1); A = 1 + serreverse( intformal( 1/(1 + (1+x)^5 +x*O(x^n)) )); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 16 2015
A258924
E.g.f.: S(x) = Series_Reversion( Integral 1/(1-x^5)^(1/5) dx ), where the constant of integration is zero.
Original entry on oeis.org
1, -24, -169344, -25255286784, -23089632627769344, -79051067969864491597824, -766667475511149432871084621824, -17578325209217134578862801556544159744, -839197248407269659950832532302025663168118784
Offset: 0
E.g.f. with offset 0 is C(x) and e.g.f. with offset 1 is S(x) where:
C(x) = 1 - 24*x^5/5! - 169344*x^10/10! - 25255286784*x^15/15! - 23089632627769344*x^20/20! +...
S(x) = x - 24*x^6/6! - 169344*x^11/11! - 25255286784*x^16/16! - 23089632627769344*x^21/21! +...
such that C(x)^5 + S(x)^5 = 1:
C(x)^5 = 1 - 120*x^5/5! + 604800*x^10/10! + 13208832000*x^15/15! +...
S(x)^5 = 120*x^5/5! - 604800*x^10/10! - 13208832000*x^15/15! -...
Related Expansions.
(1) The series reversion of S(x) is Integral 1/(1-x^5)^(1/5) dx:
Series_Reversion(S(x)) = x + 24*x^6/6! + 435456*x^11/11! + 115075344384*x^16/16! +...
1/(1-x^5)^(1/5) = 1 + 24*x^5/5! + 435456*x^10/10! + 115075344384*x^15/15! +...
(2) d/dx S(x)/C(x) = 1/C(x)^5:
1/C(x)^5 = 1 + 120*x^5/5! + 3024000*x^10/10! + 858574080000*x^15/15! +...
S(x)/C(x) = x + 120*x^6/6! + 3024000*x^11/11! + 858574080000*x^16/16! + 1226178516326400000*x^21/21! +...+ A258925(n)*x^(5*n+1)/(5*n+1)! +...
where
Series_Reversion(S(x)/C(x)) = x - 1/6*x^6 + 1/11*x^11 - 1/16*x^16 + 1/21*x^21 +...
-
/* E.g.f. Series_Reversion(Integral 1/(1-x^5)^(1/5) dx): */
{a(n)=local(S=x); S = serreverse( intformal( 1/(1-x^5 +x*O(x^(5*n)))^(1/5) )); (5*n+1)!*polcoeff(S, 5*n+1)}
for(n=0, 15, print1(a(n), ", "))
-
/* E.g.f. C(x) with offset 0: */
{a(n)=local(S=x, C=1+x); for(i=1, n, S=intformal(C +x*O(x^(5*n))); C=1-intformal(S^4/C^3 +x*O(x^(5*n))); ); (5*n)!*polcoeff(C, 5*n)}
for(n=0, 15, print1(a(n), ", "))
-
/* E.g.f. S(x) with offset 1: */
{a(n)=local(S=x, C=1+x); for(i=1, n+1, S=intformal(C +x*O(x^(5*n+1))); C=1-intformal(S^4/C^3 +x*O(x^(5*n+1))); ); (5*n+1)!*polcoeff(S, 5*n+1)}
for(n=0, 15, print1(a(n), ", "))
Showing 1-7 of 7 results.
Comments