cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258983 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,2).

Original entry on oeis.org

2, 2, 8, 8, 1, 0, 3, 9, 7, 6, 0, 3, 3, 5, 3, 7, 5, 9, 7, 6, 8, 7, 4, 6, 1, 4, 8, 9, 4, 1, 6, 8, 8, 7, 9, 1, 9, 3, 2, 5, 0, 9, 3, 4, 2, 7, 1, 9, 8, 8, 2, 1, 6, 0, 2, 2, 9, 4, 0, 7, 1, 0, 2, 6, 9, 3, 2, 2, 5, 3, 5, 8, 6, 1, 5, 2, 6, 4, 4, 5, 8, 0, 2, 6, 9, 1, 6, 0, 3, 1, 5, 0, 1, 0, 1, 5, 4, 7, 2, 0, 2, 8, 3, 7
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Comments

Also zetamult(2, 2, 1). - Charles R Greathouse IV, Jan 04 2017

Examples

			0.2288103976033537597687461489416887919325093427198821602294071...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
Cf. A013663 (zeta(5)), A183699 (zeta(2)*zeta(3)).

Programs

Formula

Equals Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^2)) = 3*zeta(2)*zeta(3) - (11/2)*zeta(5).