A258983 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,2).
2, 2, 8, 8, 1, 0, 3, 9, 7, 6, 0, 3, 3, 5, 3, 7, 5, 9, 7, 6, 8, 7, 4, 6, 1, 4, 8, 9, 4, 1, 6, 8, 8, 7, 9, 1, 9, 3, 2, 5, 0, 9, 3, 4, 2, 7, 1, 9, 8, 8, 2, 1, 6, 0, 2, 2, 9, 4, 0, 7, 1, 0, 2, 6, 9, 3, 2, 2, 5, 3, 5, 8, 6, 1, 5, 2, 6, 4, 4, 5, 8, 0, 2, 6, 9, 1, 6, 0, 3, 1, 5, 0, 1, 0, 1, 5, 4, 7, 2, 0, 2, 8, 3, 7
Offset: 0
Examples
0.2288103976033537597687461489416887919325093427198821602294071...
Links
- Dominique Manchon, Arborified multiple zeta values, arXiv:1603.01498 [math.CO], 2016.
- Jonathan Borwein and Roland Girgensohn, Evaluation of triple Euler Sums, Elec. Jour. of Comb., Vol. 3, Issue 1, 1996. Article R23 (see page 21).
- Eric Weisstein's MathWorld, Multivariate Zeta Function
- Wikipedia, Multiple zeta function
Crossrefs
Programs
-
Mathematica
RealDigits[3*Zeta[2]*Zeta[3] - (11/2)*Zeta[5], 10, 104] // First
-
PARI
zetamult([3,2]) \\ Charles R Greathouse IV, Jan 21 2016
-
PARI
zetamult([2,2,1]) \\ Charles R Greathouse IV, Jan 04 2017
Formula
Equals Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^2)) = 3*zeta(2)*zeta(3) - (11/2)*zeta(5).
Comments