A258987 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,3).
2, 1, 3, 7, 9, 8, 8, 6, 8, 2, 2, 4, 5, 9, 2, 5, 4, 7, 0, 9, 9, 5, 8, 3, 5, 7, 4, 5, 0, 8, 0, 3, 3, 6, 4, 9, 6, 4, 0, 9, 5, 8, 9, 5, 7, 8, 6, 5, 5, 1, 7, 5, 5, 6, 1, 4, 4, 5, 1, 2, 7, 4, 8, 9, 4, 7, 1, 2, 5, 8, 3, 6, 6, 1, 4, 6, 9, 8, 1, 0, 2, 0, 4, 1, 7, 0, 9, 5, 6, 0, 2, 8, 9, 9, 9, 1, 1, 5, 5, 0, 6, 4, 8
Offset: 0
Examples
0.213798868224592547099583574508033649640958957865517556144512748947...
Links
- Eric Weisstein's MathWorld, Multivariate Zeta Function
- Wikipedia, Multiple zeta function
- Index to constants which are multiple zeta values (3,3)
Crossrefs
Programs
-
Mathematica
RealDigits[(1/2)*Zeta[3]^2 - (1/2)*Zeta[6], 10, 103] // First (* Corrected by Detlef Meya, Jun 06 2025 *)
-
PARI
zetamult([3,3]) \\ Charles R Greathouse IV, Jan 21 2016
Formula
zetamult(3,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^3)) = (1/2)*zeta(3)^2 - (1/2)*zeta(6). - [Corrected by Detlef Meya, Jun 06 2025 ]
Comments