cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A258987 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,3).

Original entry on oeis.org

2, 1, 3, 7, 9, 8, 8, 6, 8, 2, 2, 4, 5, 9, 2, 5, 4, 7, 0, 9, 9, 5, 8, 3, 5, 7, 4, 5, 0, 8, 0, 3, 3, 6, 4, 9, 6, 4, 0, 9, 5, 8, 9, 5, 7, 8, 6, 5, 5, 1, 7, 5, 5, 6, 1, 4, 4, 5, 1, 2, 7, 4, 8, 9, 4, 7, 1, 2, 5, 8, 3, 6, 6, 1, 4, 6, 9, 8, 1, 0, 2, 0, 4, 1, 7, 0, 9, 5, 6, 0, 2, 8, 9, 9, 9, 1, 1, 5, 5, 0, 6, 4, 8
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.213798868224592547099583574508033649640958957865517556144512748947...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).

Programs

  • Mathematica
    RealDigits[(1/2)*Zeta[3]^2 - (1/2)*Zeta[6], 10, 103] // First (* Corrected by Detlef Meya, Jun 06 2025 *)
  • PARI
    zetamult([3,3]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(3,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^3)) = (1/2)*zeta(3)^2 - (1/2)*zeta(6). - [Corrected by Detlef Meya, Jun 06 2025 ]

A258983 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,2).

Original entry on oeis.org

2, 2, 8, 8, 1, 0, 3, 9, 7, 6, 0, 3, 3, 5, 3, 7, 5, 9, 7, 6, 8, 7, 4, 6, 1, 4, 8, 9, 4, 1, 6, 8, 8, 7, 9, 1, 9, 3, 2, 5, 0, 9, 3, 4, 2, 7, 1, 9, 8, 8, 2, 1, 6, 0, 2, 2, 9, 4, 0, 7, 1, 0, 2, 6, 9, 3, 2, 2, 5, 3, 5, 8, 6, 1, 5, 2, 6, 4, 4, 5, 8, 0, 2, 6, 9, 1, 6, 0, 3, 1, 5, 0, 1, 0, 1, 5, 4, 7, 2, 0, 2, 8, 3, 7
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Comments

Also zetamult(2, 2, 1). - Charles R Greathouse IV, Jan 04 2017

Examples

			0.2288103976033537597687461489416887919325093427198821602294071...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
Cf. A013663 (zeta(5)), A183699 (zeta(2)*zeta(3)).

Programs

Formula

Equals Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^2)) = 3*zeta(2)*zeta(3) - (11/2)*zeta(5).

A258989 Decimal expansion of the multiple zeta value (Euler sum) zetamult(2,4).

Original entry on oeis.org

6, 7, 4, 5, 2, 3, 9, 1, 4, 0, 3, 3, 9, 6, 8, 1, 4, 0, 4, 9, 1, 5, 6, 0, 6, 0, 8, 2, 5, 7, 4, 2, 9, 9, 3, 9, 2, 7, 8, 3, 8, 4, 3, 6, 5, 1, 3, 7, 8, 8, 9, 5, 7, 9, 7, 0, 6, 9, 1, 7, 2, 2, 1, 4, 4, 3, 7, 7, 4, 8, 5, 8, 2, 4, 7, 7, 2, 4, 8, 5, 1, 9, 5, 6, 2, 5, 2, 6, 8, 8, 8, 5, 3, 4, 3, 0, 7, 9, 1, 2, 7, 8, 1
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.67452391403396814049156060825742993927838436513788957970691722144377...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258990 (3,4), A258991 (4,4).

Programs

  • Mathematica
    RealDigits[(25/12)*Zeta[6] - Zeta[3]^2, 10, 103] // First
  • PARI
    zetamult([2,4]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(2,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^4)) = (25/12)*zeta(6) - zeta(3)^2.
Equals Sum_{i, j >= 1} 1/(i^4*j^2*binomial(i+j, i)). - Peter Bala, Aug 05 2025

A258984 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,2).

Original entry on oeis.org

0, 8, 8, 4, 8, 3, 3, 8, 2, 4, 5, 4, 3, 6, 8, 7, 1, 4, 2, 9, 4, 3, 2, 7, 8, 3, 9, 0, 8, 5, 7, 6, 0, 4, 5, 6, 6, 4, 7, 9, 7, 8, 7, 5, 2, 3, 8, 6, 7, 5, 0, 5, 9, 1, 6, 7, 4, 8, 8, 9, 2, 7, 6, 5, 5, 9, 4, 7, 4, 2, 7, 8, 9, 2, 8, 7, 4, 3, 5, 7, 1, 4, 5, 5, 8, 2, 7, 7, 9, 4, 6, 0, 0, 4, 7, 0, 5, 8, 6, 6, 1, 9, 5, 5, 9, 6, 6, 7
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.088483382454368714294327839085760456647978752386750591674889276559474...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).

Programs

  • Mathematica
    Join[{0}, RealDigits[Zeta[3]^2 - (4/3)*Zeta[6], 10, 107] // First]
  • PARI
    zetamult([4,2]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(4,2) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^4*n^2)) = zeta(3)^2 - (4/3)*zeta(6).

A258985 Decimal expansion of the multiple zeta value (Euler sum) zetamult(5,2).

Original entry on oeis.org

0, 3, 8, 5, 7, 5, 1, 2, 4, 3, 4, 2, 7, 5, 3, 2, 5, 5, 5, 0, 5, 9, 2, 5, 4, 6, 4, 3, 7, 2, 9, 9, 5, 5, 7, 0, 0, 1, 9, 7, 3, 4, 8, 4, 1, 6, 9, 8, 9, 0, 9, 0, 0, 8, 3, 3, 1, 0, 4, 9, 3, 7, 2, 9, 3, 3, 5, 8, 2, 3, 6, 5, 9, 1, 0, 8, 4, 5, 3, 8, 3, 6, 5, 5, 6, 8, 4, 8, 8, 2, 9, 4, 6, 4, 5, 6, 4, 7, 3, 1, 5, 5, 6, 4, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.03857512434275325550592546437299557001973484169890900833104937293358...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).

Programs

  • Mathematica
    Join[{0}, RealDigits[5*Zeta[2]*Zeta[5] + 2*Zeta[3]*Zeta[4] - 11*Zeta[7], 10, 104] // First]
  • PARI
    zetamult([5,2]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(5,2) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^5*n^2)) = 5*zeta(2)*zeta(5) + 2*zeta(3)*zeta(4) - 11*zeta(7).

A258988 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,3).

Original entry on oeis.org

0, 8, 5, 1, 5, 9, 8, 2, 2, 5, 3, 4, 8, 3, 3, 6, 5, 1, 4, 0, 6, 8, 0, 6, 0, 1, 8, 8, 7, 2, 3, 6, 7, 3, 4, 5, 9, 5, 7, 3, 3, 9, 5, 0, 8, 5, 8, 6, 8, 7, 7, 3, 2, 0, 4, 6, 7, 1, 0, 3, 4, 3, 2, 0, 5, 3, 3, 0, 8, 5, 7, 6, 7, 5, 0, 8, 7, 1, 7, 6, 6, 5, 1, 1, 1, 7, 3, 3, 8, 6, 7, 5, 8, 1, 8, 5, 0, 2, 0, 7, 2, 0, 5, 4, 1
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.0851598225348336514068060188723673459573395085868773204671034320533...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).

Programs

  • Mathematica
    Join[{0}, RealDigits[17*Zeta[7] - 10*Zeta[2]*Zeta[5], 10, 104] // First]
  • PARI
    zetamult([4,3]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(4,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^3)) = 17*zeta(7) - 10*zeta(2)*zeta(5).

A258990 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,4).

Original entry on oeis.org

2, 0, 7, 5, 0, 5, 0, 1, 4, 6, 1, 5, 7, 3, 2, 0, 9, 5, 9, 0, 7, 8, 0, 7, 6, 0, 5, 4, 9, 4, 6, 7, 1, 4, 6, 5, 4, 4, 1, 8, 2, 8, 6, 7, 9, 5, 5, 0, 6, 0, 6, 1, 9, 0, 4, 1, 9, 5, 1, 7, 8, 9, 6, 5, 6, 9, 7, 1, 0, 1, 1, 9, 9, 7, 1, 6, 0, 7, 8, 0, 0, 7, 8, 0, 9, 8, 6, 6, 4, 3, 6, 3, 3, 0, 5, 2, 3, 0, 2, 0, 2, 9, 6, 5, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.20750501461573209590780760549467146544182867955060619041951789656971...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258991 (4,4).

Programs

  • Mathematica
    RealDigits[10*Zeta[2]*Zeta[5] + Zeta[3]*Zeta[4] - 18*Zeta[7], 10, 105] // First
  • PARI
    zetamult([3,4]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(3,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^4)) = 10*zeta(2)*zeta(5) + zeta(3)*zeta(4) - 18*zeta(7).

A258991 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,4).

Original entry on oeis.org

0, 8, 3, 6, 7, 3, 1, 1, 3, 0, 1, 6, 4, 9, 5, 3, 6, 1, 6, 1, 4, 8, 9, 0, 4, 3, 6, 5, 4, 2, 3, 8, 7, 7, 0, 5, 4, 3, 8, 2, 4, 6, 7, 3, 2, 5, 5, 4, 1, 5, 4, 1, 6, 8, 3, 6, 0, 7, 5, 9, 1, 8, 3, 5, 5, 4, 3, 8, 1, 9, 1, 2, 7, 1, 4, 5, 6, 2, 4, 0, 1, 1, 9, 9, 6, 0, 7, 2, 6, 9, 1, 9, 7, 6, 9, 7, 6, 6, 4, 2, 6, 0, 3, 7, 6, 9, 7
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.08367311301649536161489043654238770543824673255415416836075918355438...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4).

Programs

Formula

zetamult(4,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^4*n^4)) = (1/2)*(zeta(4)^2 - zeta(8)).

A382634 Decimal expansion of the multiple prime zeta value p[2, 3].

Original entry on oeis.org

0, 2, 9, 1, 8, 5, 1, 6, 6, 5, 0, 4, 0, 1, 2, 5, 7, 1, 0, 4, 0, 6, 4, 1, 3, 4, 4, 0, 9, 0, 2, 7, 9, 1, 9, 6, 7, 4, 7
Offset: 0

Views

Author

Artur Jasinski, Apr 01 2025

Keywords

Comments

Prime multiple zeta constants p[m,...,n] are equivalents of multiple zeta constants when successive natural numbers are replaced by successive primes.
For complete list of multiple prime zeta values up to weight 6 see A382234.

Examples

			0.029185166504012571040641344090279196747...
		

Crossrefs

Programs

  • Mathematica
    p2 = N[PrimeZetaP[2], 50]; p = 2; sum = 0; sum1 = 0; diff = 0; Monitor[Do[sum = sum + N[1/p^2, 50]; diff = p2 - sum; sum1 = sum1 + diff/p^3; p = NextPrime[p], {n, 1, 100000000}], {sum1, n}]

Formula

Equals Sum_{p,q prime p>q} 1/(p^2*q^3).
For partial sums and in infinity occurs identity:
p[2, 3] + p[3, 2] + p[2, 1, 2] + p[2, 2, 1] = p[1] p[2, 2]- p[1, 2, 2]
where p[1] and p[1, 2, 2] are divergent series then
lim_{n->oo} p[1](n)*A382234 - p[1, 2, 2](n) = 0.067101047034256...
Showing 1-9 of 9 results.