A382635 Decimal expansion of the multiple prime zeta value p[3, 2].
0, 1, 4, 0, 9, 5, 7, 6, 8, 7, 5, 4, 8, 0, 3, 8, 3, 3, 5, 1, 2, 7, 2, 0, 3, 1, 3, 5, 9, 9, 8, 7, 9, 9, 7, 4, 8, 8, 5
Offset: 0
Examples
0.014095768754803833512720313599879974885...
Programs
-
Mathematica
p3 = N[PrimeZetaP[3], 50]; p = 2; sum = 0; sum1 = 0; diff = 0; Monitor[Do[sum = sum + N[1/p^3, 50]; diff = p3 - sum; sum1 = sum1 + diff/p^2; p = NextPrime[p], {n, 1, 100000000}], {sum1, n}]
Formula
Equals Sum_{p,q prime p>q} 1/(p^3*q^2).
For partial sums and in infinity occurs identity:
p[2, 3] + p[3, 2] + p[2, 1, 2] + p[2, 2, 1] = p[1]*p[2, 2] - p[1, 2, 2]
where p[1] and p[1, 2, 2] are divergent series then
lim_{n->oo} p[1](n)*A382234 - p[1, 2, 2](n) = 0.067101047034256...
Comments