cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A258983 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,2).

Original entry on oeis.org

2, 2, 8, 8, 1, 0, 3, 9, 7, 6, 0, 3, 3, 5, 3, 7, 5, 9, 7, 6, 8, 7, 4, 6, 1, 4, 8, 9, 4, 1, 6, 8, 8, 7, 9, 1, 9, 3, 2, 5, 0, 9, 3, 4, 2, 7, 1, 9, 8, 8, 2, 1, 6, 0, 2, 2, 9, 4, 0, 7, 1, 0, 2, 6, 9, 3, 2, 2, 5, 3, 5, 8, 6, 1, 5, 2, 6, 4, 4, 5, 8, 0, 2, 6, 9, 1, 6, 0, 3, 1, 5, 0, 1, 0, 1, 5, 4, 7, 2, 0, 2, 8, 3, 7
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Comments

Also zetamult(2, 2, 1). - Charles R Greathouse IV, Jan 04 2017

Examples

			0.2288103976033537597687461489416887919325093427198821602294071...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
Cf. A013663 (zeta(5)), A183699 (zeta(2)*zeta(3)).

Programs

Formula

Equals Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^2)) = 3*zeta(2)*zeta(3) - (11/2)*zeta(5).

A258989 Decimal expansion of the multiple zeta value (Euler sum) zetamult(2,4).

Original entry on oeis.org

6, 7, 4, 5, 2, 3, 9, 1, 4, 0, 3, 3, 9, 6, 8, 1, 4, 0, 4, 9, 1, 5, 6, 0, 6, 0, 8, 2, 5, 7, 4, 2, 9, 9, 3, 9, 2, 7, 8, 3, 8, 4, 3, 6, 5, 1, 3, 7, 8, 8, 9, 5, 7, 9, 7, 0, 6, 9, 1, 7, 2, 2, 1, 4, 4, 3, 7, 7, 4, 8, 5, 8, 2, 4, 7, 7, 2, 4, 8, 5, 1, 9, 5, 6, 2, 5, 2, 6, 8, 8, 8, 5, 3, 4, 3, 0, 7, 9, 1, 2, 7, 8, 1
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.67452391403396814049156060825742993927838436513788957970691722144377...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258990 (3,4), A258991 (4,4).

Programs

  • Mathematica
    RealDigits[(25/12)*Zeta[6] - Zeta[3]^2, 10, 103] // First
  • PARI
    zetamult([2,4]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(2,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^4)) = (25/12)*zeta(6) - zeta(3)^2.
Equals Sum_{i, j >= 1} 1/(i^4*j^2*binomial(i+j, i)). - Peter Bala, Aug 05 2025

A258984 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,2).

Original entry on oeis.org

0, 8, 8, 4, 8, 3, 3, 8, 2, 4, 5, 4, 3, 6, 8, 7, 1, 4, 2, 9, 4, 3, 2, 7, 8, 3, 9, 0, 8, 5, 7, 6, 0, 4, 5, 6, 6, 4, 7, 9, 7, 8, 7, 5, 2, 3, 8, 6, 7, 5, 0, 5, 9, 1, 6, 7, 4, 8, 8, 9, 2, 7, 6, 5, 5, 9, 4, 7, 4, 2, 7, 8, 9, 2, 8, 7, 4, 3, 5, 7, 1, 4, 5, 5, 8, 2, 7, 7, 9, 4, 6, 0, 0, 4, 7, 0, 5, 8, 6, 6, 1, 9, 5, 5, 9, 6, 6, 7
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.088483382454368714294327839085760456647978752386750591674889276559474...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).

Programs

  • Mathematica
    Join[{0}, RealDigits[Zeta[3]^2 - (4/3)*Zeta[6], 10, 107] // First]
  • PARI
    zetamult([4,2]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(4,2) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^4*n^2)) = zeta(3)^2 - (4/3)*zeta(6).

A258985 Decimal expansion of the multiple zeta value (Euler sum) zetamult(5,2).

Original entry on oeis.org

0, 3, 8, 5, 7, 5, 1, 2, 4, 3, 4, 2, 7, 5, 3, 2, 5, 5, 5, 0, 5, 9, 2, 5, 4, 6, 4, 3, 7, 2, 9, 9, 5, 5, 7, 0, 0, 1, 9, 7, 3, 4, 8, 4, 1, 6, 9, 8, 9, 0, 9, 0, 0, 8, 3, 3, 1, 0, 4, 9, 3, 7, 2, 9, 3, 3, 5, 8, 2, 3, 6, 5, 9, 1, 0, 8, 4, 5, 3, 8, 3, 6, 5, 5, 6, 8, 4, 8, 8, 2, 9, 4, 6, 4, 5, 6, 4, 7, 3, 1, 5, 5, 6, 4, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.03857512434275325550592546437299557001973484169890900833104937293358...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).

Programs

  • Mathematica
    Join[{0}, RealDigits[5*Zeta[2]*Zeta[5] + 2*Zeta[3]*Zeta[4] - 11*Zeta[7], 10, 104] // First]
  • PARI
    zetamult([5,2]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(5,2) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^5*n^2)) = 5*zeta(2)*zeta(5) + 2*zeta(3)*zeta(4) - 11*zeta(7).

A258986 Decimal expansion of the multiple zeta value (Euler sum) zetamult(2,3).

Original entry on oeis.org

7, 1, 1, 5, 6, 6, 1, 9, 7, 5, 5, 0, 5, 7, 2, 4, 3, 2, 0, 9, 6, 9, 7, 3, 8, 0, 6, 0, 8, 6, 4, 0, 2, 6, 1, 2, 0, 9, 2, 5, 6, 1, 2, 0, 4, 4, 3, 8, 3, 3, 9, 2, 3, 6, 4, 9, 2, 2, 2, 2, 4, 9, 6, 4, 5, 7, 6, 8, 6, 0, 8, 5, 7, 4, 5, 0, 5, 8, 2, 6, 5, 1, 1, 5, 4, 2, 5, 2, 3, 4, 4, 6, 3, 6, 0, 0, 7, 9, 8, 9, 6, 4, 1
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.711566197550572432096973806086402612092561204438339236492222496457686...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
Cf. A013663 (zeta(5)), A183699 (zeta(2)*zeta(3)).

Programs

  • Mathematica
    RealDigits[(9/2)*Zeta[5] - 2*Zeta[2]*Zeta[3], 10, 103] // First
  • PARI
    zetamult([2,3]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(2,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^3)) = (9/2)*zeta(5) - 2*zeta(2)*zeta(3).
Equals Sum_{i, j >= 1} 1/(i^3*j^2*binomial(i+j, i)). More generally, for n >= 2, Sum_{i, j >= 1} 1/(i^n*j^2*binomial(i+j, i)) = zeta(2)*zeta(n) - zeta(n+2) - zeta(n,2). - Peter Bala, Aug 05 2025

A258988 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,3).

Original entry on oeis.org

0, 8, 5, 1, 5, 9, 8, 2, 2, 5, 3, 4, 8, 3, 3, 6, 5, 1, 4, 0, 6, 8, 0, 6, 0, 1, 8, 8, 7, 2, 3, 6, 7, 3, 4, 5, 9, 5, 7, 3, 3, 9, 5, 0, 8, 5, 8, 6, 8, 7, 7, 3, 2, 0, 4, 6, 7, 1, 0, 3, 4, 3, 2, 0, 5, 3, 3, 0, 8, 5, 7, 6, 7, 5, 0, 8, 7, 1, 7, 6, 6, 5, 1, 1, 1, 7, 3, 3, 8, 6, 7, 5, 8, 1, 8, 5, 0, 2, 0, 7, 2, 0, 5, 4, 1
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.0851598225348336514068060188723673459573395085868773204671034320533...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).

Programs

  • Mathematica
    Join[{0}, RealDigits[17*Zeta[7] - 10*Zeta[2]*Zeta[5], 10, 104] // First]
  • PARI
    zetamult([4,3]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(4,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^3)) = 17*zeta(7) - 10*zeta(2)*zeta(5).

A258990 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,4).

Original entry on oeis.org

2, 0, 7, 5, 0, 5, 0, 1, 4, 6, 1, 5, 7, 3, 2, 0, 9, 5, 9, 0, 7, 8, 0, 7, 6, 0, 5, 4, 9, 4, 6, 7, 1, 4, 6, 5, 4, 4, 1, 8, 2, 8, 6, 7, 9, 5, 5, 0, 6, 0, 6, 1, 9, 0, 4, 1, 9, 5, 1, 7, 8, 9, 6, 5, 6, 9, 7, 1, 0, 1, 1, 9, 9, 7, 1, 6, 0, 7, 8, 0, 0, 7, 8, 0, 9, 8, 6, 6, 4, 3, 6, 3, 3, 0, 5, 2, 3, 0, 2, 0, 2, 9, 6, 5, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.20750501461573209590780760549467146544182867955060619041951789656971...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258991 (4,4).

Programs

  • Mathematica
    RealDigits[10*Zeta[2]*Zeta[5] + Zeta[3]*Zeta[4] - 18*Zeta[7], 10, 105] // First
  • PARI
    zetamult([3,4]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(3,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^4)) = 10*zeta(2)*zeta(5) + zeta(3)*zeta(4) - 18*zeta(7).

A258991 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,4).

Original entry on oeis.org

0, 8, 3, 6, 7, 3, 1, 1, 3, 0, 1, 6, 4, 9, 5, 3, 6, 1, 6, 1, 4, 8, 9, 0, 4, 3, 6, 5, 4, 2, 3, 8, 7, 7, 0, 5, 4, 3, 8, 2, 4, 6, 7, 3, 2, 5, 5, 4, 1, 5, 4, 1, 6, 8, 3, 6, 0, 7, 5, 9, 1, 8, 3, 5, 5, 4, 3, 8, 1, 9, 1, 2, 7, 1, 4, 5, 6, 2, 4, 0, 1, 1, 9, 9, 6, 0, 7, 2, 6, 9, 1, 9, 7, 6, 9, 7, 6, 6, 4, 2, 6, 0, 3, 7, 6, 9, 7
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.08367311301649536161489043654238770543824673255415416836075918355438...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4).

Programs

Formula

zetamult(4,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^4*n^4)) = (1/2)*(zeta(4)^2 - zeta(8)).

A382235 Decimal expansion of the multiple prime zeta value primezetamult(3, 3).

Original entry on oeis.org

0, 0, 6, 7, 3, 5, 9, 4, 6, 6, 2, 2, 1, 3, 5, 4, 4, 6, 7, 2, 4, 5, 6, 2, 2, 8, 2, 5, 8, 6, 7, 7, 6, 8, 0, 1, 4, 1, 9, 3, 4, 6, 2, 3, 6, 6, 0, 5, 8, 0, 4, 2, 1, 2, 1, 1, 2, 4, 6, 4, 2, 8, 8, 9, 3, 9, 6, 2, 5, 8, 1, 3, 4, 5, 0, 2, 1, 3, 6, 9, 2, 5, 9, 5, 9, 1, 7, 1, 9, 4, 2, 8, 8, 1, 9, 4, 7, 5, 0, 2, 4, 0, 0, 8, 1, 0, 1
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Comments

Prime zeta analog of A258987.

Examples

			0.00673594662213544672456...
		

Crossrefs

Cf. A258987, A382234 (2,2), A382236 (2,2,).

Programs

  • Mathematica
    kk = {0, 0}; kkk = RealDigits[(PrimeZetaP[3]^2 - PrimeZetaP[6])/2, 10, 105][[1]]; Flatten[AppendTo[kk, kkk]]

Formula

Equals (A085541^2 - A085966)/2 .
Equals Sum_{p,q prime p>q} 1/(p^3*q^3).

A259928 Decimal expansion of the infinite double sum S = Sum_{m>=1} (Sum_{n>=1} 1/(m^2*n*(m+n)^3)).

Original entry on oeis.org

1, 6, 9, 5, 5, 7, 1, 7, 6, 9, 9, 7, 4, 0, 8, 1, 8, 9, 9, 5, 2, 4, 1, 9, 6, 5, 4, 9, 6, 5, 1, 5, 3, 4, 2, 1, 3, 1, 6, 9, 6, 9, 5, 8, 1, 6, 7, 2, 1, 4, 2, 2, 6, 0, 3, 0, 7, 0, 6, 8, 1, 1, 0, 6, 6, 7, 3, 8, 8, 6, 9, 7, 1, 5, 0, 3, 2, 6, 3, 1, 6, 3, 1, 3, 7, 9, 5, 6, 6, 2, 9, 8, 9, 7, 5, 5, 8, 6, 1, 7, 5, 5, 0
Offset: 0

Views

Author

Jean-François Alcover, Jul 09 2015

Keywords

Examples

			0.16955717699740818995241965496515342131696958167214226030706811...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^6/5670, 10, 103] // First
  • PARI
    Pi^6/5670 \\ Michel Marcus, Jul 09 2015

Formula

S = (7/4)*zeta(6) - zeta(3)^2/2 - sum_{m>=1} (PolyGamma(1, m+1)/m^4) + (1/2)*sum_{m>=1} (PolyGamma(2, m+1)/m^3), where sum_{m>=1} (PolyGamma(1, m+1)/m^4) is A258989, the second sum being A259927.
S simplifies to zeta(6)/6 = Pi^6/5670.
2*A258987 + 6*S = zeta(3)^2.
Showing 1-10 of 11 results. Next