cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A258987 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,3).

Original entry on oeis.org

2, 1, 3, 7, 9, 8, 8, 6, 8, 2, 2, 4, 5, 9, 2, 5, 4, 7, 0, 9, 9, 5, 8, 3, 5, 7, 4, 5, 0, 8, 0, 3, 3, 6, 4, 9, 6, 4, 0, 9, 5, 8, 9, 5, 7, 8, 6, 5, 5, 1, 7, 5, 5, 6, 1, 4, 4, 5, 1, 2, 7, 4, 8, 9, 4, 7, 1, 2, 5, 8, 3, 6, 6, 1, 4, 6, 9, 8, 1, 0, 2, 0, 4, 1, 7, 0, 9, 5, 6, 0, 2, 8, 9, 9, 9, 1, 1, 5, 5, 0, 6, 4, 8
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.213798868224592547099583574508033649640958957865517556144512748947...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).

Programs

  • Mathematica
    RealDigits[(1/2)*Zeta[3]^2 - (1/2)*Zeta[6], 10, 103] // First (* Corrected by Detlef Meya, Jun 06 2025 *)
  • PARI
    zetamult([3,3]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(3,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^3)) = (1/2)*zeta(3)^2 - (1/2)*zeta(6). - [Corrected by Detlef Meya, Jun 06 2025 ]

A258983 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,2).

Original entry on oeis.org

2, 2, 8, 8, 1, 0, 3, 9, 7, 6, 0, 3, 3, 5, 3, 7, 5, 9, 7, 6, 8, 7, 4, 6, 1, 4, 8, 9, 4, 1, 6, 8, 8, 7, 9, 1, 9, 3, 2, 5, 0, 9, 3, 4, 2, 7, 1, 9, 8, 8, 2, 1, 6, 0, 2, 2, 9, 4, 0, 7, 1, 0, 2, 6, 9, 3, 2, 2, 5, 3, 5, 8, 6, 1, 5, 2, 6, 4, 4, 5, 8, 0, 2, 6, 9, 1, 6, 0, 3, 1, 5, 0, 1, 0, 1, 5, 4, 7, 2, 0, 2, 8, 3, 7
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Comments

Also zetamult(2, 2, 1). - Charles R Greathouse IV, Jan 04 2017

Examples

			0.2288103976033537597687461489416887919325093427198821602294071...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
Cf. A013663 (zeta(5)), A183699 (zeta(2)*zeta(3)).

Programs

Formula

Equals Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^2)) = 3*zeta(2)*zeta(3) - (11/2)*zeta(5).

A258989 Decimal expansion of the multiple zeta value (Euler sum) zetamult(2,4).

Original entry on oeis.org

6, 7, 4, 5, 2, 3, 9, 1, 4, 0, 3, 3, 9, 6, 8, 1, 4, 0, 4, 9, 1, 5, 6, 0, 6, 0, 8, 2, 5, 7, 4, 2, 9, 9, 3, 9, 2, 7, 8, 3, 8, 4, 3, 6, 5, 1, 3, 7, 8, 8, 9, 5, 7, 9, 7, 0, 6, 9, 1, 7, 2, 2, 1, 4, 4, 3, 7, 7, 4, 8, 5, 8, 2, 4, 7, 7, 2, 4, 8, 5, 1, 9, 5, 6, 2, 5, 2, 6, 8, 8, 8, 5, 3, 4, 3, 0, 7, 9, 1, 2, 7, 8, 1
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.67452391403396814049156060825742993927838436513788957970691722144377...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258990 (3,4), A258991 (4,4).

Programs

  • Mathematica
    RealDigits[(25/12)*Zeta[6] - Zeta[3]^2, 10, 103] // First
  • PARI
    zetamult([2,4]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(2,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^4)) = (25/12)*zeta(6) - zeta(3)^2.
Equals Sum_{i, j >= 1} 1/(i^4*j^2*binomial(i+j, i)). - Peter Bala, Aug 05 2025

A258984 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,2).

Original entry on oeis.org

0, 8, 8, 4, 8, 3, 3, 8, 2, 4, 5, 4, 3, 6, 8, 7, 1, 4, 2, 9, 4, 3, 2, 7, 8, 3, 9, 0, 8, 5, 7, 6, 0, 4, 5, 6, 6, 4, 7, 9, 7, 8, 7, 5, 2, 3, 8, 6, 7, 5, 0, 5, 9, 1, 6, 7, 4, 8, 8, 9, 2, 7, 6, 5, 5, 9, 4, 7, 4, 2, 7, 8, 9, 2, 8, 7, 4, 3, 5, 7, 1, 4, 5, 5, 8, 2, 7, 7, 9, 4, 6, 0, 0, 4, 7, 0, 5, 8, 6, 6, 1, 9, 5, 5, 9, 6, 6, 7
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.088483382454368714294327839085760456647978752386750591674889276559474...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).

Programs

  • Mathematica
    Join[{0}, RealDigits[Zeta[3]^2 - (4/3)*Zeta[6], 10, 107] // First]
  • PARI
    zetamult([4,2]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(4,2) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^4*n^2)) = zeta(3)^2 - (4/3)*zeta(6).

A258985 Decimal expansion of the multiple zeta value (Euler sum) zetamult(5,2).

Original entry on oeis.org

0, 3, 8, 5, 7, 5, 1, 2, 4, 3, 4, 2, 7, 5, 3, 2, 5, 5, 5, 0, 5, 9, 2, 5, 4, 6, 4, 3, 7, 2, 9, 9, 5, 5, 7, 0, 0, 1, 9, 7, 3, 4, 8, 4, 1, 6, 9, 8, 9, 0, 9, 0, 0, 8, 3, 3, 1, 0, 4, 9, 3, 7, 2, 9, 3, 3, 5, 8, 2, 3, 6, 5, 9, 1, 0, 8, 4, 5, 3, 8, 3, 6, 5, 5, 6, 8, 4, 8, 8, 2, 9, 4, 6, 4, 5, 6, 4, 7, 3, 1, 5, 5, 6, 4, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.03857512434275325550592546437299557001973484169890900833104937293358...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).

Programs

  • Mathematica
    Join[{0}, RealDigits[5*Zeta[2]*Zeta[5] + 2*Zeta[3]*Zeta[4] - 11*Zeta[7], 10, 104] // First]
  • PARI
    zetamult([5,2]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(5,2) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^5*n^2)) = 5*zeta(2)*zeta(5) + 2*zeta(3)*zeta(4) - 11*zeta(7).

A258986 Decimal expansion of the multiple zeta value (Euler sum) zetamult(2,3).

Original entry on oeis.org

7, 1, 1, 5, 6, 6, 1, 9, 7, 5, 5, 0, 5, 7, 2, 4, 3, 2, 0, 9, 6, 9, 7, 3, 8, 0, 6, 0, 8, 6, 4, 0, 2, 6, 1, 2, 0, 9, 2, 5, 6, 1, 2, 0, 4, 4, 3, 8, 3, 3, 9, 2, 3, 6, 4, 9, 2, 2, 2, 2, 4, 9, 6, 4, 5, 7, 6, 8, 6, 0, 8, 5, 7, 4, 5, 0, 5, 8, 2, 6, 5, 1, 1, 5, 4, 2, 5, 2, 3, 4, 4, 6, 3, 6, 0, 0, 7, 9, 8, 9, 6, 4, 1
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.711566197550572432096973806086402612092561204438339236492222496457686...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
Cf. A013663 (zeta(5)), A183699 (zeta(2)*zeta(3)).

Programs

  • Mathematica
    RealDigits[(9/2)*Zeta[5] - 2*Zeta[2]*Zeta[3], 10, 103] // First
  • PARI
    zetamult([2,3]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(2,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^3)) = (9/2)*zeta(5) - 2*zeta(2)*zeta(3).
Equals Sum_{i, j >= 1} 1/(i^3*j^2*binomial(i+j, i)). More generally, for n >= 2, Sum_{i, j >= 1} 1/(i^n*j^2*binomial(i+j, i)) = zeta(2)*zeta(n) - zeta(n+2) - zeta(n,2). - Peter Bala, Aug 05 2025

A258988 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,3).

Original entry on oeis.org

0, 8, 5, 1, 5, 9, 8, 2, 2, 5, 3, 4, 8, 3, 3, 6, 5, 1, 4, 0, 6, 8, 0, 6, 0, 1, 8, 8, 7, 2, 3, 6, 7, 3, 4, 5, 9, 5, 7, 3, 3, 9, 5, 0, 8, 5, 8, 6, 8, 7, 7, 3, 2, 0, 4, 6, 7, 1, 0, 3, 4, 3, 2, 0, 5, 3, 3, 0, 8, 5, 7, 6, 7, 5, 0, 8, 7, 1, 7, 6, 6, 5, 1, 1, 1, 7, 3, 3, 8, 6, 7, 5, 8, 1, 8, 5, 0, 2, 0, 7, 2, 0, 5, 4, 1
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.0851598225348336514068060188723673459573395085868773204671034320533...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).

Programs

  • Mathematica
    Join[{0}, RealDigits[17*Zeta[7] - 10*Zeta[2]*Zeta[5], 10, 104] // First]
  • PARI
    zetamult([4,3]) \\ Charles R Greathouse IV, Jan 21 2016

Formula

zetamult(4,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^3)) = 17*zeta(7) - 10*zeta(2)*zeta(5).

A258991 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,4).

Original entry on oeis.org

0, 8, 3, 6, 7, 3, 1, 1, 3, 0, 1, 6, 4, 9, 5, 3, 6, 1, 6, 1, 4, 8, 9, 0, 4, 3, 6, 5, 4, 2, 3, 8, 7, 7, 0, 5, 4, 3, 8, 2, 4, 6, 7, 3, 2, 5, 5, 4, 1, 5, 4, 1, 6, 8, 3, 6, 0, 7, 5, 9, 1, 8, 3, 5, 5, 4, 3, 8, 1, 9, 1, 2, 7, 1, 4, 5, 6, 2, 4, 0, 1, 1, 9, 9, 6, 0, 7, 2, 6, 9, 1, 9, 7, 6, 9, 7, 6, 6, 4, 2, 6, 0, 3, 7, 6, 9, 7
Offset: 0

Views

Author

Jean-François Alcover, Jun 16 2015

Keywords

Examples

			0.08367311301649536161489043654238770543824673255415416836075918355438...
		

Crossrefs

Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4).

Programs

Formula

zetamult(4,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^4*n^4)) = (1/2)*(zeta(4)^2 - zeta(8)).

A381394 Decimal expansion of the multiple zeta value zetamult(8,2).

Original entry on oeis.org

0, 0, 4, 1, 2, 2, 4, 6, 9, 6, 7, 8, 3, 9, 9, 8, 3, 2, 2, 2, 4, 0, 4, 6, 9, 5, 6, 8, 3, 8, 6, 9, 4, 2, 0, 8, 8, 5, 5, 8, 1, 2, 6, 2, 7, 3, 5, 8, 4, 6, 8, 5, 6, 9, 2, 8, 5, 2, 4, 5, 5, 1, 7, 9, 2, 8, 7, 1, 7, 1, 1, 1, 2, 7, 7, 4, 0, 6, 3, 8, 8, 3, 3, 1, 2, 7, 5, 9, 4, 5, 3, 4, 5, 2, 4, 3, 4, 1, 7, 3, 8, 8, 1, 7, 4
Offset: 0

Views

Author

R. J. Mathar, Feb 22 2025

Keywords

Examples

			0.004122469678399832224046956838694208855812627358468569285245...
		

Crossrefs

MZV's zetamult(a,b): A072691 (zetamult(1,1)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4), A381651 (4,1).

Programs

  • Mathematica
    RealDigits[N[MZV[{8, 2}], 120], 10, 105, -1][[1]] (* Amiram Eldar, Feb 25 2025 using the HPL Package *)
  • PARI
    zetamult([8, 2]) \\ Amiram Eldar, Feb 25 2025

Formula

zeta(r,s) = Sum_{1 <= m < n} 1/(m^s n^r).

Extensions

More terms from Amiram Eldar, Feb 25 2025
Name corrected by Peter Bala, Aug 15 2025
Showing 1-9 of 9 results.