A258989 Decimal expansion of the multiple zeta value (Euler sum) zetamult(2,4).
6, 7, 4, 5, 2, 3, 9, 1, 4, 0, 3, 3, 9, 6, 8, 1, 4, 0, 4, 9, 1, 5, 6, 0, 6, 0, 8, 2, 5, 7, 4, 2, 9, 9, 3, 9, 2, 7, 8, 3, 8, 4, 3, 6, 5, 1, 3, 7, 8, 8, 9, 5, 7, 9, 7, 0, 6, 9, 1, 7, 2, 2, 1, 4, 4, 3, 7, 7, 4, 8, 5, 8, 2, 4, 7, 7, 2, 4, 8, 5, 1, 9, 5, 6, 2, 5, 2, 6, 8, 8, 8, 5, 3, 4, 3, 0, 7, 9, 1, 2, 7, 8, 1
Offset: 0
Examples
0.67452391403396814049156060825742993927838436513788957970691722144377...
Links
- Eric Weisstein's MathWorld, Multivariate Zeta Function
- Wikipedia, Multiple zeta function
Crossrefs
Programs
-
Mathematica
RealDigits[(25/12)*Zeta[6] - Zeta[3]^2, 10, 103] // First
-
PARI
zetamult([2,4]) \\ Charles R Greathouse IV, Jan 21 2016
Formula
zetamult(2,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^4)) = (25/12)*zeta(6) - zeta(3)^2.
Equals Sum_{i, j >= 1} 1/(i^4*j^2*binomial(i+j, i)). - Peter Bala, Aug 05 2025