A258990 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,4).
2, 0, 7, 5, 0, 5, 0, 1, 4, 6, 1, 5, 7, 3, 2, 0, 9, 5, 9, 0, 7, 8, 0, 7, 6, 0, 5, 4, 9, 4, 6, 7, 1, 4, 6, 5, 4, 4, 1, 8, 2, 8, 6, 7, 9, 5, 5, 0, 6, 0, 6, 1, 9, 0, 4, 1, 9, 5, 1, 7, 8, 9, 6, 5, 6, 9, 7, 1, 0, 1, 1, 9, 9, 7, 1, 6, 0, 7, 8, 0, 0, 7, 8, 0, 9, 8, 6, 6, 4, 3, 6, 3, 3, 0, 5, 2, 3, 0, 2, 0, 2, 9, 6, 5, 9
Offset: 0
Examples
0.20750501461573209590780760549467146544182867955060619041951789656971...
Links
- Eric Weisstein's MathWorld, Multivariate Zeta Function
- Wikipedia, Multiple zeta function
Crossrefs
Programs
-
Mathematica
RealDigits[10*Zeta[2]*Zeta[5] + Zeta[3]*Zeta[4] - 18*Zeta[7], 10, 105] // First
-
PARI
zetamult([3,4]) \\ Charles R Greathouse IV, Jan 21 2016
Formula
zetamult(3,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^4)) = 10*zeta(2)*zeta(5) + zeta(3)*zeta(4) - 18*zeta(7).