cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258993 Triangle read by rows: T(n,k) = binomial(n+k,n-k), k = 0..n-1.

Original entry on oeis.org

1, 1, 3, 1, 6, 5, 1, 10, 15, 7, 1, 15, 35, 28, 9, 1, 21, 70, 84, 45, 11, 1, 28, 126, 210, 165, 66, 13, 1, 36, 210, 462, 495, 286, 91, 15, 1, 45, 330, 924, 1287, 1001, 455, 120, 17, 1, 55, 495, 1716, 3003, 3003, 1820, 680, 153, 19, 1, 66, 715, 3003, 6435, 8008, 6188, 3060, 969, 190, 21
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 22 2015

Keywords

Comments

T(n,k) = A085478(n,k) = A007318(A094727(n),A004736(k)), k = 0..n-1;
rounded(T(n,k)/(2*k+1)) = A258708(n,k);
rounded(sum(T(n,k)/(2*k+1)): k = 0..n-1) = A000967(n).

Examples

			.  n\k |  0  1    2    3     4     5     6     7    8    9  10 11
. -----+-----------------------------------------------------------
.   1  |  1
.   2  |  1  3
.   3  |  1  6    5
.   4  |  1 10   15    7
.   5  |  1 15   35   28     9
.   6  |  1 21   70   84    45    11
.   7  |  1 28  126  210   165    66    13
.   8  |  1 36  210  462   495   286    91    15
.   9  |  1 45  330  924  1287  1001   455   120   17
.  10  |  1 55  495 1716  3003  3003  1820   680  153   19
.  11  |  1 66  715 3003  6435  8008  6188  3060  969  190  21
.  12  |  1 78 1001 5005 12870 19448 18564 11628 4845 1330 231 23  .
		

Crossrefs

If a diagonal of 1's is added on the right, this becomes A085478.
Essentially the same as A143858.
Cf. A027941 (row sums), A117671 (central terms), A143858, A000967, A258708.
T(n,k): A000217 (k=1), A000332 (k=2), A000579 (k=3), A000581 (k=4), A001287 (k=5), A010965 (k=6), A010967 (k=7), A010969 (k=8), A010971 (k=9), A010973 (k=10), A010975 (k=11), A010977 (k=12), A010979 (k=13), A010981 (k=14), A010983 (k=15), A010985 (k=16), A010987 (k=17), A010989 (k=18), A010991 (k=19), A010993 (k=20), A010995 (k=21), A010997 (k=22), A010999 (k=23), A011001 (k=24), A017714 (k=25), A017716 (k=26), A017718 (k=27), A017720 (k=28), A017722 (k=29), A017724 (k=30), A017726 (k=31), A017728 (k=32), A017730 (k=33), A017732 (k=34), A017734 (k=35), A017736 (k=36), A017738 (k=37), A017740 (k=38), A017742 (k=39), A017744 (k=40), A017746 (k=41), A017748 (k=42), A017750 (k=43), A017752 (k=44), A017754 (k=45), A017756 (k=46), A017758 (k=47), A017760 (k=48), A017762 (k=49), A017764 (k=50).
T(n+k,n): A005408 (k=1), A000384 (k=2), A000447 (k=3), A053134 (k=4), A002299 (k=5), A053135 (k=6), A053136 (k=7), A053137 (k=8), A053138 (k=9), A196789 (k=10).
Cf. A165253.

Programs

  • GAP
    Flat(List([1..12], n-> List([0..n-1], k-> Binomial(n+k,n-k) ))); # G. C. Greubel, Aug 01 2019
  • Haskell
    a258993 n k = a258993_tabl !! (n-1) !! k
    a258993_row n = a258993_tabl !! (n-1)
    a258993_tabl = zipWith (zipWith a007318) a094727_tabl a004736_tabl
    
  • Magma
    [Binomial(n+k,n-k): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    Table[Binomial[n+k,n-k], {n,1,12}, {k,0,n-1}]//Flatten (* G. C. Greubel, Aug 01 2019 *)
  • PARI
    T(n,k) = binomial(n+k,n-k);
    for(n=1, 12, for(k=0,n-1, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    [[binomial(n+k,n-k) for k in (0..n-1)] for n in (1..12)] # G. C. Greubel, Aug 01 2019
    

Formula

T(n,k) = A085478(n,k) = A007318(A094727(n),A004736(k)), k = 0..n-1;
rounded(T(n,k)/(2*k+1)) = A258708(n,k);
rounded(sum(T(n,k)/(2*k+1)): k = 0..n-1) = A000967(n).