A259021 Numbers k such that k^2 = Product_{d|k} d (= A007955(k)) and simultaneously k^2 + 1 is a divisorial prime (A258455).
1, 6, 10, 14, 26, 74, 94, 134, 146, 206, 314, 326, 386, 466, 634, 674, 1094, 1174, 1294, 1306, 1354, 1366, 1546, 1654, 1766, 1774, 1894, 1966, 2026, 2126, 2174, 2326, 2594, 2654, 2746, 2974, 2986, 3046, 3106, 3134, 3214, 3254, 3274, 3314, 3326, 3334, 3446
Offset: 1
Keywords
Examples
The number 10 is in sequence because 10^2 = 1*2*5*10 = 100 and simultaneously 101 is prime.
Links
- Danny Rorabaugh, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[Floor(Sqrt(n-1)): n in [1..10000000] | IsPrime(n) and n-1 eq (&*(Divisors(Floor(Sqrt(n-1)))))];
-
Mathematica
Prepend[2*Select[Prime[Range[2, 300]], PrimeQ[4 #^2 + 1] &], 1] (* Amiram Eldar, Sep 25 2022 *)
-
Sage
a = [n for n in range(1,100000) if is_prime(n^2+1) and n^2==prod(list(divisors(n)))] # Danny Rorabaugh, Sep 21 2015
Formula
a(n) = 2*A052291(n) for n > 1. - Amiram Eldar, Sep 25 2022
Comments