A259023 Numbers n such that Product_{d|n} d = k^2 for some k > n and simultaneously number k^2 + 1 is a divisorial prime (A258455).
24, 54, 56, 88, 154, 174, 238, 248, 266, 296, 328, 374, 378, 430, 442, 472, 488, 494, 498, 510, 568, 582, 584, 680, 710, 730, 742, 786, 856, 874, 894, 918, 962, 986, 1038, 1246, 1270, 1406, 1434, 1442, 1446, 1542, 1558, 1586, 1598
Offset: 1
Keywords
Examples
The number 24 is in sequence because A007955(24) = 331776 = 576^2 and simultaneously 331777 is prime.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
[n: n in [1..2000] | &*(Divisors(n)) ne n^2 and IsSquare(&*(Divisors(n))) and IsPrime(&*(Divisors(n))+1)];
-
PARI
A007955(n)=if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2)) is(n)=my(t=A007955(n)); t>n^2 && issquare(t) && isprime(t+1) \\ Charles R Greathouse IV, Sep 01 2015
Comments