cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A259063 E.g.f.: Series_Reversion( 3*x - 2*x*exp(x) ).

Original entry on oeis.org

1, 4, 54, 1208, 37810, 1521252, 74800558, 4346473840, 291409650378, 22142153337500, 1880332153123270, 176486211108436968, 18142303135426278562, 2027140583610836224468, 244622970048028087152990, 31706140285613089502561504, 4392907300768938557656691194, 647905974466168686991684285836
Offset: 1

Views

Author

Paul D. Hanna, Jun 17 2015

Keywords

Examples

			E.g.f.: A(x) = x + 4*x^2/2! + 54*x^3/3! + 1208*x^4/4! + 37810*x^5/5! + ...
where A(3*x - 2*x*exp(x)) = x.
Also we have the related infinite series.
O.g.f.: F(x) = x + 4*x^2 + 54*x^3 + 1208*x^4 + 37810*x^5 + 1521252*x^6 + ...
where F(x)/x = 1/3 + 2/(3-x)^2 + 2^2/(3-2*x)^3 + 2^3/(3-3*x)^4 + 2^4/(3-4*x)^5 +...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[3*x - 2*x*E^x, {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jun 19 2015 *)
  • PARI
    {a(n) = local(A=x); A = serreverse(3*x - 2*x*exp(x +x*O(x^n) )); n!*polcoeff(A,n)}
    for(n=1,20,print1(a(n),", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A = x + sum(m=1, n, Dx(m-1, 2^m*(exp(x+x*O(x^n))-1)^m * x^m/m!)); n!*polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A = x*exp(sum(m=1, n, Dx(m-1, 2^m*(exp(x+x*O(x^n))-1)^m * x^(m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))

Formula

O.g.f.: x * Sum_{n>=0} 2^n / (3 - n*x)^(n+1).
E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) 2^n * (exp(x)-1)^n * x^n / n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) 2^n * (exp(x)-1)^n * x^(n-1) / n! ).
a(n) ~ (c/(3*exp(1)))^n * n^(n-1) / (sqrt(c+1) * (c-1)^(2*n-1)), where c = LambertW(3*exp(1)/2). - Vaclav Kotesovec, Jun 19 2015

A259064 E.g.f.: Series_Reversion( 4*x - 3*x*exp(x) ).

Original entry on oeis.org

1, 6, 117, 3792, 172005, 10030248, 714843885, 60207412128, 5850995291397, 644410711219800, 79322681596610661, 10791841135527454896, 1608054016025580893445, 260445389091217967677992, 45557042043723212142506205, 8559094926999510089793332544, 1718950045690606262911636792677
Offset: 1

Views

Author

Paul D. Hanna, Jun 17 2015

Keywords

Examples

			E.g.f.: A(x) = x + 6*x^2/2! + 117*x^3/3! + 3792*x^4/4! + 172005*x^5/5! +...
where A(4*x - 3*x*exp(x)) = x.
Also we have the related infinite series.
O.g.f.: F(x) = x + 6*x^2 + 117*x^3 + 3792*x^4 + 172005*x^5 + 10030248*x^6 +...
where F(x)/x = 1/4 + 3/(4-x)^2 + 3^2/(4-2*x)^3 + 3^3/(4-3*x)^4 + 3^4/(4-4*x)^5 +...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[4*x - 3*x*E^x, {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jun 19 2015 *)
  • PARI
    {a(n) = local(A=x); A = serreverse(4*x - 3*x*exp(x +x*O(x^n) )); n!*polcoeff(A,n)}
    for(n=1,20,print1(a(n),", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, 3^m*(exp(x+x*O(x^n))-1)^m*x^m/m!)); n!*polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, 3^m*(exp(x+x*O(x^n))-1)^m*x^(m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))

Formula

O.g.f.: x * Sum_{n>=0} 3^n / (4 - n*x)^(n+1).
E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) 3^n * (exp(x)-1)^n * x^n / n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) 3^n * (exp(x)-1)^n * x^(n-1) / n! ).
a(n) ~ (c/(4*exp(1)))^n * n^(n-1) / (sqrt(c+1) * (c-1)^(2*n-1)), where c = LambertW(4*exp(1)/3). - Vaclav Kotesovec, Jun 19 2015

A259066 E.g.f.: Series_Reversion( 6*x - 5*x*exp(x) ).

Original entry on oeis.org

1, 10, 315, 16520, 1212775, 114465780, 13204213435, 1800094703440, 283154358503295, 50478562633826300, 10057594831485171355, 2214859039031666012760, 534202513174577053611415, 140048168049127802257998820, 39652657811418543065286846075, 12058716801545122639605896216480
Offset: 1

Views

Author

Paul D. Hanna, Jun 17 2015

Keywords

Examples

			E.g.f.: A(x) = x + 10*x^2/2! + 315*x^3/3! + 16520*x^4/4! + 1212775*x^5/5! +...
where A(6*x - 5*x*exp(x)) = x.
Also we have the related infinite series.
O.g.f.: F(x) = x + 10*x^2 + 315*x^3 + 16520*x^4 + 1212775*x^5 +...
where F(x)/x = 1/6 + 5/(6-x)^2 + 5^2/(6-2*x)^3 + 5^3/(6-3*x)^4 + 5^4/(6-4*x)^5 +...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[6*x - 5*x*E^x, {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jun 19 2015 *)
  • PARI
    {a(n) = local(A=x); A = serreverse(6*x - 5*x*exp(x +x*O(x^n) )); n!*polcoeff(A,n)}
    for(n=1,20,print1(a(n),", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A = x + sum(m=1, n, Dx(m-1, 5^m*(exp(x+x*O(x^n))-1)^m * x^m/m!)); n!*polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A = x*exp(sum(m=1, n, Dx(m-1, 5^m*(exp(x+x*O(x^n))-1)^m * x^(m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))

Formula

O.g.f.: x * Sum_{n>=0} 5^n / (6 - n*x)^(n+1).
E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) 5^n * (exp(x)-1)^n * x^n / n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) 5^n * (exp(x)-1)^n * x^(n-1) / n! ).
a(n) ~ (c/(6*exp(1)))^n * n^(n-1) / (sqrt(c+1) * (c-1)^(2*n-1)), where c = LambertW(6*exp(1)/5). - Vaclav Kotesovec, Jun 19 2015

A259062 E.g.f.: Series_Reversion( -x + 2*x*exp(-x) ).

Original entry on oeis.org

1, 4, 42, 728, 17630, 548532, 20852370, 936655792, 48540537702, 2850727359500, 187107038833946, 13572973331551944, 1078343465147156910, 93119965280416893028, 8684514946963752624930, 869915871265946242868576, 93146889134541855185069942, 10617155946603647157142073916
Offset: 1

Views

Author

Paul D. Hanna, Jun 18 2015

Keywords

Examples

			E.g.f.: A(x) = x + 4*x^2/2! + 42*x^3/3! + 728*x^4/4! + 17630*x^5/5! +...
where A(-x + 2*x*exp(-x)) = x.
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[-x + 2*x*E^(-x), {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jun 19 2015 *)
  • PARI
    {a(n) = local(A=x); A = serreverse(-x + 2*x*exp(-x +x*O(x^n) )); n!*polcoeff(A, n)}
    for(n=1, 20, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, 2^m*(1-exp(-x+x*O(x^n)))^m*x^m/m!)); n!*polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, 2^m*(1-exp(-x+x*O(x^n)))^m*x^(m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
    for(n=1, 25, print1(a(n), ", "))

Formula

E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) 2^n * (1 - exp(-x))^n * x^n / n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) 2^n * (1 - exp(-x))^n * x^(n-1) / n! ).
a(n) ~ (1-c) * n^(n-1) / (sqrt(1+c) * (c + 1/c - 2)^n * exp(n)), where c = LambertW(exp(1)/2) = 0.685076942154593946... . - Vaclav Kotesovec, Jun 19 2015
Showing 1-4 of 4 results.