A259063
E.g.f.: Series_Reversion( 3*x - 2*x*exp(x) ).
Original entry on oeis.org
1, 4, 54, 1208, 37810, 1521252, 74800558, 4346473840, 291409650378, 22142153337500, 1880332153123270, 176486211108436968, 18142303135426278562, 2027140583610836224468, 244622970048028087152990, 31706140285613089502561504, 4392907300768938557656691194, 647905974466168686991684285836
Offset: 1
E.g.f.: A(x) = x + 4*x^2/2! + 54*x^3/3! + 1208*x^4/4! + 37810*x^5/5! + ...
where A(3*x - 2*x*exp(x)) = x.
Also we have the related infinite series.
O.g.f.: F(x) = x + 4*x^2 + 54*x^3 + 1208*x^4 + 37810*x^5 + 1521252*x^6 + ...
where F(x)/x = 1/3 + 2/(3-x)^2 + 2^2/(3-2*x)^3 + 2^3/(3-3*x)^4 + 2^4/(3-4*x)^5 +...
-
Rest[CoefficientList[InverseSeries[Series[3*x - 2*x*E^x, {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jun 19 2015 *)
-
{a(n) = local(A=x); A = serreverse(3*x - 2*x*exp(x +x*O(x^n) )); n!*polcoeff(A,n)}
for(n=1,20,print1(a(n),", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A = x + sum(m=1, n, Dx(m-1, 2^m*(exp(x+x*O(x^n))-1)^m * x^m/m!)); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A = x*exp(sum(m=1, n, Dx(m-1, 2^m*(exp(x+x*O(x^n))-1)^m * x^(m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
A259065
E.g.f.: Series_Reversion( 5*x - 4*x*exp(x) ).
Original entry on oeis.org
1, 8, 204, 8656, 514100, 39254904, 3663341724, 404021632928, 51413304278916, 7414832746025800, 1195170934203398636, 212923233266007511152, 41545466670049713766356, 8811212141812890158250776, 2018230889016461893216938300, 496523506149784085749952075584, 130578628540561635331879674437156
Offset: 1
E.g.f.: A(x) = x + 8*x^2/2! + 204*x^3/3! + 8656*x^4/4! + 514100*x^5/5! +...
where A(5*x - 4*x*exp(x)) = x.
Also we have the related infinite series.
O.g.f.: F(x) = x + 8*x^2 + 204*x^3 + 8656*x^4 + 514100*x^5 + 39254904*x^6 +...
where F(x)/x = 1/5 + 4/(5-x)^2 + 4^2/(5-2*x)^3 + 4^3/(5-3*x)^4 + 4^4/(5-4*x)^5 +...
-
Rest[CoefficientList[InverseSeries[Series[5*x - 4*x*E^x, {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jun 19 2015 *)
-
{a(n) = local(A=x); A = serreverse(5*x - 4*x*exp(x +x*O(x^n) )); n!*polcoeff(A,n)}
for(n=1,20,print1(a(n),", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A = x+sum(m=1, n, Dx(m-1, 4^m*(exp(x+x*O(x^n))-1)^m * x^m/m!)); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A = x*exp(sum(m=1, n, Dx(m-1, 4^m*(exp(x+x*O(x^n))-1)^m * x^(m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
A259066
E.g.f.: Series_Reversion( 6*x - 5*x*exp(x) ).
Original entry on oeis.org
1, 10, 315, 16520, 1212775, 114465780, 13204213435, 1800094703440, 283154358503295, 50478562633826300, 10057594831485171355, 2214859039031666012760, 534202513174577053611415, 140048168049127802257998820, 39652657811418543065286846075, 12058716801545122639605896216480
Offset: 1
E.g.f.: A(x) = x + 10*x^2/2! + 315*x^3/3! + 16520*x^4/4! + 1212775*x^5/5! +...
where A(6*x - 5*x*exp(x)) = x.
Also we have the related infinite series.
O.g.f.: F(x) = x + 10*x^2 + 315*x^3 + 16520*x^4 + 1212775*x^5 +...
where F(x)/x = 1/6 + 5/(6-x)^2 + 5^2/(6-2*x)^3 + 5^3/(6-3*x)^4 + 5^4/(6-4*x)^5 +...
-
Rest[CoefficientList[InverseSeries[Series[6*x - 5*x*E^x, {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jun 19 2015 *)
-
{a(n) = local(A=x); A = serreverse(6*x - 5*x*exp(x +x*O(x^n) )); n!*polcoeff(A,n)}
for(n=1,20,print1(a(n),", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A = x + sum(m=1, n, Dx(m-1, 5^m*(exp(x+x*O(x^n))-1)^m * x^m/m!)); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A = x*exp(sum(m=1, n, Dx(m-1, 5^m*(exp(x+x*O(x^n))-1)^m * x^(m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
A258923
E.g.f. satisfies A(x) = 1/(4 - 3*exp(x*A(x))).
Original entry on oeis.org
1, 3, 39, 948, 34401, 1671708, 102120555, 7525926516, 650110587933, 64441071121980, 7211152872419151, 899320094627287908, 123696462771198530265, 18603242077944140548428, 3037136136248214142833747, 534943432937469380612083284, 101114708570035662524213928981, 20416341060201627868414787791068
Offset: 0
E.g.f.: A(x) = 1 + 3*x + 39*x^2/2! + 948*x^3/3! + 34401*x^4/4! + 1671708*x^5/5! +...
where A(4*x - 3*x*exp(x)) = 1/(4 - 3*exp(x)).
-
CoefficientList[1/x*InverseSeries[Series[4*x - 3*x*E^x, {x, 0, 21}], x],x] * Range[0, 20]! (* Vaclav Kotesovec, Jun 19 2015 *)
-
{a(n) = local(A=1); A = (1/x)*serreverse(4*x - 3*x*exp(x +x^2*O(x^n) )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=1); A = 1 + (1/x)*sum(m=1, n+1, Dx(m-1, 3^m*(exp(x+x*O(x^n))-1)^m * x^m/m!)); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=1+x+x*O(x^n)); A = exp(sum(m=1, n+1, Dx(m-1, 3^m*(exp(x+x*O(x^n))-1)^m * x^(m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
A259062
E.g.f.: Series_Reversion( -x + 2*x*exp(-x) ).
Original entry on oeis.org
1, 4, 42, 728, 17630, 548532, 20852370, 936655792, 48540537702, 2850727359500, 187107038833946, 13572973331551944, 1078343465147156910, 93119965280416893028, 8684514946963752624930, 869915871265946242868576, 93146889134541855185069942, 10617155946603647157142073916
Offset: 1
E.g.f.: A(x) = x + 4*x^2/2! + 42*x^3/3! + 728*x^4/4! + 17630*x^5/5! +...
where A(-x + 2*x*exp(-x)) = x.
-
Rest[CoefficientList[InverseSeries[Series[-x + 2*x*E^(-x), {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Jun 19 2015 *)
-
{a(n) = local(A=x); A = serreverse(-x + 2*x*exp(-x +x*O(x^n) )); n!*polcoeff(A, n)}
for(n=1, 20, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, 2^m*(1-exp(-x+x*O(x^n)))^m*x^m/m!)); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, 2^m*(1-exp(-x+x*O(x^n)))^m*x^(m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
Showing 1-5 of 5 results.