cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259111 a(n) = least number k > 1 such that 1^k + 2^k + ... + k^k == n (mod k).

Original entry on oeis.org

2, 4, 2, 8, 2, 3, 2, 16, 2, 4, 2, 3, 2, 4, 2, 32, 2, 3, 2, 5, 2, 4, 2, 3, 2, 4, 2, 7, 2, 3, 2, 64, 2, 4, 2, 3, 2, 4, 2, 5, 2, 3, 2, 8, 2, 4, 2, 3, 2, 4, 2, 8, 2, 3, 2, 7, 2, 4, 2, 3, 2, 4, 2, 128, 2, 3, 2, 8, 2, 4, 2, 3, 2, 4, 2, 8, 2, 3, 2, 5, 2, 4, 2, 3, 2, 4, 2, 11, 2, 3, 2, 8, 2, 4, 2, 3, 2, 4, 2, 5
Offset: 1

Views

Author

Derek Orr, Jun 18 2015

Keywords

Examples

			Consider n=2:
Is k=2? 1^2 + 2^2 == 1 (mod 2). No.
Is k=3? 1^3 + 2^3 + 3^3 == 0 (mod 3). No.
Is k=4? 1^4 + 2^4 + 3^4 + 4^4 == 2 (mod 4). Yes. So a(2) = 4.
(Example corrected by _N. J. A. Sloane_, Jul 02 2019)
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local k; for k from 2 while
          add(i&^k mod k, i=1..k) mod k <> n mod k do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 18 2015
  • Mathematica
    lnk[n_]:=Module[{k=2},While[Mod[Total[Range[k]^k],k]!=Mod[n,k],k++];k]; Array[ lnk,100] (* Harvey P. Dale, Jul 02 2019 *)
  • PARI
    vector(100,n,k=2;while(sum(i=1,k,i^k)!=Mod(n,k),k++);k)

Formula

a(2^n) = 2^(n+1) for n >= 0.