A259142 Least prime p of the form n*q^2+(n+1)*r^2 with q and r prime.
17, 83, 43, 61, 149, 199, 263, 113, 331, 139, 383, 373, 173, 191, 199, 569, 587, 547, 251, 269, 277, 757, 1223, 1321, 859, 347, 787, 373, 3779, 1789, 1063, 953, 433, 1181, 1019, 1069, 1283, 503, 2311, 5209, 1193, 1453, 563, 1301, 2389, 607, 1367, 1657, 641, 659, 1483, 1777, 1811, 1861, 719, 1913, 1657, 1997, 4391, 3229, 797, 1823
Offset: 1
Examples
17=1*3^2+2*2^2, 83=2*2^2+3*5^2, 43=3*3^2+4*2^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Zak Seidov, First 100 values of {p,q,r}.
Programs
-
Maple
P:= [seq(ithprime(i),i=1..20)]: np:= 20: for n from 1 to 100 do found:= false; while not found do R:= sort([seq(seq(n*q^2+(n+1)*p^2,p=P),q=P)]); w:= n*4+(n+1)*P[-1]^2+1; r:= ListTools:-SelectFirst(isprime,R); if r <> NULL and r <= w then A[n]:= r; found:= true; else P:= [op(P), seq(ithprime(i),i=np+1..np+20)]; np:= np+20; fi od; od: seq(A[i],i=1..100); # Robert Israel, Apr 30 2018
Comments