cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A259172 Numbers in A259145 that are neither prime nor semiprime.

Original entry on oeis.org

561, 595, 1105, 1235, 1245, 1495, 1547, 1885, 2405, 2555, 2717, 2849, 3115, 3495, 3655, 3657, 3689, 3815, 4521, 4795, 4945, 5035, 5385, 5395, 5453, 5457, 5709, 5865, 6083, 6141, 6251, 6285, 6365, 6391, 6501, 6695, 6755, 6969, 7021, 7887, 8113, 8255, 8355
Offset: 1

Views

Author

Keywords

Comments

Regarding the distribution: Let K be the union of primes and semiprimes in A259145. Let S be the set of other terms. The growth rate of the cardinality of S with respect to the cardinality of K is significantly slower. For instance, if we take the first 50000 terms of A259145, about 32.5 percent are contained in S. If we take the first 350000 terms, about 38.2 percent are contained in S.
a(n) that are in A002997 (Carmichael numbers) for a(n) <= 10^6 are 561, 1105, 8911, 10585, 29341, 825265.
a(n) that are in A051015 (Zeisel numbers) for a(n) <= 3*10^6 are 1885, 353977, 2953711.

Crossrefs

Subsequence of A000469, A033942, A050384 (conjuctered).

Programs

  • Mathematica
    Select[Range[25000], PrimeQ[#^2 - EulerPhi[#]] && PrimeNu[#] > 2 &]

Formula

A001221(a(n)) > 2.
A000005(a(n)) = 2^k, k >= 3.

A258435 Primes of form x^2 - phi(x) in increasing order.

Original entry on oeis.org

3, 7, 43, 157, 1069, 1201, 4177, 4423, 5869, 6163, 8209, 17581, 19183, 22651, 26407, 37057, 48649, 60793, 61837, 82129, 89137, 102829, 113233, 115981, 121453, 141793, 143263, 190573, 208393, 230929, 283609, 292141, 303097, 314401, 337069
Offset: 1

Views

Author

Keywords

Examples

			a(1) = 3, because  2^2 - 1 = 3, and 1^2 - 1 = 0 is not a prime.
a(2) = 7, since 3^2 = 9, phi(3) = 2, so 9-2 = 7 (prime).
a(3) = 43, since 7^2 = 49, phi(7) = 6, so 49-6 = 43 (prime).
a(6) = 1201, since 35^2 = 1225, phi(35) = 24, so 1225-24 = 1201 (prime).
		

Crossrefs

Subset of A258434.
For phi see A000010.
A074268 is a subsequence. - Michel Marcus, Jun 19 2015
Cf. A259145.

Programs

  • Magma
    [a: n in [1..1000] | IsPrime(a) where a is n^2-EulerPhi(n) ]; // Vincenzo Librandi, Jun 03 2015
    
  • Mathematica
    lst = Table[n^2 - EulerPhi[n], {n, 1000}]; Select[lst, PrimeQ]
    Select[Table[n^2 - EulerPhi[n], {n, 1000}], PrimeQ] (* Vincenzo Librandi, Jun 03 2015 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (isprime(p=n^2 -eulerphi(n)), print1(p, ", ")););} \\ Michel Marcus, Jul 08 2015

Extensions

More terms from Vincenzo Librandi, Jun 03 2015
Edited by Wolfdieter Lang, Jun 16 2015

A275059 Numbers n such that A000010(n) + n^2 is a prime.

Original entry on oeis.org

1, 2, 3, 5, 11, 13, 15, 19, 31, 33, 35, 41, 51, 53, 59, 65, 83, 89, 91, 101, 103, 115, 131, 141, 149, 161, 163, 181, 185, 187, 191, 193, 199, 217, 221, 233, 241, 263, 281, 287, 295, 303, 329, 331, 349, 373, 401, 415, 419, 431, 433, 445, 449, 461, 463, 469, 473, 499, 517
Offset: 1

Views

Author

Vincenzo Librandi, Jul 27 2016

Keywords

Comments

For n >= 2, a(n) is odd and squarefree. - Robert Israel, Jul 29 2016

Examples

			5 is a term because A000010(5) + 5^2 = 29 is a prime number.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..800] | IsPrime(n^2+EulerPhi(n))];
    
  • Maple
    select(t -> isprime(numtheory:-phi(t) + t^2), [1,2,seq(n,n=3..1000,2)]); # Robert Israel, Jul 29 2016
  • Mathematica
    Select[Range[2000], PrimeQ[#^2 + EulerPhi[#]] &]
  • PARI
    isok(n) = isprime(eulerphi(n) + n^2); \\ Altug Alkan, Jul 27 2016
Showing 1-3 of 3 results.