cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259184 a(n) = 1 - sigma(n) + sigma(n)^2.

Original entry on oeis.org

1, 7, 13, 43, 31, 133, 57, 211, 157, 307, 133, 757, 183, 553, 553, 931, 307, 1483, 381, 1723, 993, 1261, 553, 3541, 931, 1723, 1561, 3081, 871, 5113, 993, 3907, 2257, 2863, 2257, 8191, 1407, 3541, 3081, 8011, 1723, 9121, 1893, 6973, 6007, 5113, 2257, 15253
Offset: 1

Views

Author

Robert Price, Jun 20 2015

Keywords

Crossrefs

Cf. A000203 (sum of divisors of n).
Cf. A259185 (indices of primes in this sequence), A259186 (corresponding primes).

Programs

  • Maple
    with(numtheory): A259184:=n->1-sigma(n)+sigma(n)^2: seq(A259184(n), n=1..100); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Table[1 - DivisorSigma[1, n] + DivisorSigma[1, n]^2, {n, 10000}]
    Table[Cyclotomic[6, DivisorSigma[1, n]], {n, 10000}]
  • PARI
    a(n) = polcyclo(6, sigma(n)); \\ Michel Marcus, Jun 25 2015

Formula

a(n) = 1 - A000203(n) + A000203(n)^2.
a(n) = 1 - A000203(n) + A072861(n). - Omar E. Pol, Jun 20 2015
a(n) = A002061(A000203(n)). - Michel Marcus, Jun 25 2015

A259186 Primes in A259184.

Original entry on oeis.org

7, 13, 43, 31, 211, 157, 307, 757, 307, 1483, 1723, 3541, 1723, 5113, 3907, 8191, 3541, 8011, 1723, 6007, 5113, 5113, 14281, 5113, 14281, 8011, 3541, 28057, 20593, 20593, 5113, 37831, 28057, 17293, 14281, 8011, 12433, 28057, 20593, 14281, 24181, 10303, 46441
Offset: 1

Views

Author

Robert Price, Jun 20 2015

Keywords

Comments

These primes are neither sorted nor uniqued. They are listed in the order found in A259184.

Crossrefs

Programs

  • Maple
    with(numtheory): A259186:=n->`if`(isprime(1 - sigma(n) + sigma(n)^2), 1 - sigma(n) + sigma(n)^2, NULL): seq(A259186(n), n=1..200); # Wesley Ivan Hurt, Jul 09 2015
  • Mathematica
    Select[Table[1 - DivisorSigma[1, n] + DivisorSigma[1, n]^2, {n, 10000}], PrimeQ]
    Select[Table[Cyclotomic[6, DivisorSigma[1, n]], {n, 10000}], PrimeQ]

Formula

a(n) = A259184(A259185(n)).
Showing 1-2 of 2 results.