A259196 Number of partitions of n into six primes.
1, 1, 1, 2, 2, 3, 4, 3, 4, 5, 6, 6, 8, 7, 10, 10, 12, 11, 16, 12, 19, 17, 22, 18, 26, 20, 31, 24, 33, 27, 42, 29, 47, 35, 51, 38, 60, 41, 68, 47, 73, 53, 86, 54, 95, 64, 103, 70, 116, 73, 131, 81, 137, 89, 156, 92, 171, 103, 180, 112, 202, 117, 223, 127, 232
Offset: 12
Examples
a(17) = 3 because there are 3 partitions of 17 into six primes: [2,2,2,2,2,7], [2,2,2,3,3,5] and [2,3,3,3,3,3].
Links
Crossrefs
Programs
-
Mathematica
Table[Count[IntegerPartitions[n,{6}],?(AllTrue[#,PrimeQ]&)],{n,12,80}] (* _Harvey P. Dale, Jul 27 2024 *)
Formula
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} A010051(i) * A010051(j) * A010051(k) * A010051(l) * A010051(m) * A010051(n-i-j-k-l-m). - Wesley Ivan Hurt, Apr 17 2019
a(n) = [x^n y^6] Product_{k>=1} 1/(1 - y*x^prime(k)). - Ilya Gutkovskiy, Apr 18 2019