A259197 Number of partitions of n into seven primes.
1, 1, 1, 2, 2, 3, 4, 4, 4, 6, 6, 8, 8, 9, 10, 14, 12, 16, 16, 19, 19, 26, 22, 30, 26, 34, 31, 43, 33, 48, 42, 56, 47, 66, 51, 77, 60, 84, 68, 99, 73, 112, 86, 123, 95, 143, 103, 162, 116, 174, 131, 200, 137, 220, 156, 241, 171, 270, 180, 300, 202, 322, 223, 359
Offset: 14
Examples
a(17) = 2 because there are 2 partitions of 17 into seven primes: [2,2,2,2,2,2,5] and [2,2,2,2,3,3,3].
Links
Crossrefs
Programs
-
Mathematica
Table[Length@IntegerPartitions[n, {7}, Prime@Range@100], {n, 14, 100}] (* Robert Price, Apr 25 2025 *)
Formula
a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} A010051(i) * A010051(j) * A010051(k) * A010051(l) * A010051(m) * A010051(o) * A010051(n-i-j-k-l-m-o). - Wesley Ivan Hurt, Apr 17 2019
a(n) = [x^n y^7] Product_{k>=1} 1/(1 - y*x^prime(k)). - Ilya Gutkovskiy, Apr 18 2019