A259198 Number of partitions of n into eight primes.
1, 1, 1, 2, 2, 3, 4, 4, 5, 6, 7, 8, 10, 9, 12, 14, 16, 16, 21, 19, 26, 26, 31, 30, 39, 34, 46, 43, 53, 48, 65, 56, 77, 66, 85, 77, 104, 84, 118, 99, 133, 112, 155, 123, 177, 143, 196, 162, 227, 174, 256, 200, 282, 220, 318, 241, 360, 270, 389, 300, 442, 322
Offset: 16
Examples
a(20) = 2 because there are 2 partitions of 20 into eight primes: [2,2,2,2,2,2,3,5] and [2,2,2,2,3,3,3,3].
Links
Crossrefs
Programs
-
Mathematica
Table[Length@IntegerPartitions[n, {8}, Prime@Range@100], {n, 16, 100}] (* Robert Price, Apr 25 2025 *)
Formula
a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} A010051(i) * A010051(j) * A010051(k) * A010051(l) * A010051(m) * A010051(o) * A010051(p) * A010051(n-i-j-k-l-m-o-p). - Wesley Ivan Hurt, Apr 17 2019
a(n) = [x^n y^8] Product_{k>=1} 1/(1 - y*x^prime(k)). - Ilya Gutkovskiy, Apr 18 2019
a(n) = A326455(n)/n for n > 0. - Wesley Ivan Hurt, Jul 06 2019