cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259198 Number of partitions of n into eight primes.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 5, 6, 7, 8, 10, 9, 12, 14, 16, 16, 21, 19, 26, 26, 31, 30, 39, 34, 46, 43, 53, 48, 65, 56, 77, 66, 85, 77, 104, 84, 118, 99, 133, 112, 155, 123, 177, 143, 196, 162, 227, 174, 256, 200, 282, 220, 318, 241, 360, 270, 389, 300, 442, 322
Offset: 16

Views

Author

Doug Bell, Jun 20 2015

Keywords

Examples

			a(20) = 2 because there are 2 partitions of 20 into eight primes: [2,2,2,2,2,2,3,5] and [2,2,2,2,3,3,3,3].
		

Crossrefs

Column k=8 of A117278.
Number of partitions of n into r primes for r = 1-10: A010051, A061358, A068307, A259194, A259195, A259196, A259197, this sequence, A259200, A259201.
Cf. A000040.

Programs

  • Mathematica
    Table[Length@IntegerPartitions[n, {8}, Prime@Range@100], {n, 16, 100}] (* Robert Price, Apr 25 2025 *)

Formula

a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} A010051(i) * A010051(j) * A010051(k) * A010051(l) * A010051(m) * A010051(o) * A010051(p) * A010051(n-i-j-k-l-m-o-p). - Wesley Ivan Hurt, Apr 17 2019
a(n) = [x^n y^8] Product_{k>=1} 1/(1 - y*x^prime(k)). - Ilya Gutkovskiy, Apr 18 2019
a(n) = A326455(n)/n for n > 0. - Wesley Ivan Hurt, Jul 06 2019