A259230 a(n) = smallest k such that (A115091(n)-k)! == -1 (mod A115091(n)^2).
1, 6, 1, 24, 64, 1, 384
Offset: 1
Examples
a(2) = 6, because 6 is the smallest k such that (A115091(2)-k)! == -1 (mod A115091(2)^2), which yields the congruence (11-6)! == -1 (mod 11^2).
Programs
-
Mathematica
t = Select[Prime@ Range@ 120, AnyTrue[Range@ #, Function[m, Divisible[m! + 1, #^2]]] &]; Table[k = 1; While[Mod[(t[[n]] - k)!, t[[n]]^2] != t[[n]]^2 - 1, k++]; k, {n, 7}] (* Michael De Vlieger, Nov 10 2015, Version 10 *)
-
PARI
forprime(p=1, , for(k=1, p-1, if(Mod((p-k)!, p^2)==-1, print1(k, ", "); break({1}))))
Comments