A259286 Triangle of polynomials P(n,y) of order n in y, generated by the extension to the variable y of the e.g.f. of A259239(n), i.e., exp(y*(x-sqrt(1-x^2)+1)).
1, 1, 1, 0, 3, 1, 3, 3, 6, 1, 0, 15, 15, 10, 1, 45, 45, 60, 45, 15, 1, 0, 315, 315, 210, 105, 21, 1, 1575, 1575, 1890, 1365, 630, 210, 28, 1, 0, 14175, 14175, 9450, 4725, 1638, 378, 36, 1, 99225, 99225, 113400, 80325, 38745, 14175, 3780, 630, 45, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 0, 3, 1; 3, 3, 6, 1; 0, 15, 15, 10, 1;
Crossrefs
Cf. A259239.
Programs
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> `if`(n::even,0^n,n*doublefactorial(n-2)^2), 9); # Peter Luschny, Jan 29 2016
-
Mathematica
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; B = BellMatrix[Function[n, Which[n==0, 1, EvenQ[n], 0, True, n*(n-2)!!^2]], rows = 12]; Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
-
PARI
row(n) = x='x+O('x^(n+1));polcoeff(serlaplace(exp(y*(x-sqrt(1-x^2)+1))), n, 'x); tabl(nn) = for (n=1, nn, print(Vecrev(row(n)/y))) \\ Michel Marcus, Jun 23 2015
Comments