cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259286 Triangle of polynomials P(n,y) of order n in y, generated by the extension to the variable y of the e.g.f. of A259239(n), i.e., exp(y*(x-sqrt(1-x^2)+1)).

Original entry on oeis.org

1, 1, 1, 0, 3, 1, 3, 3, 6, 1, 0, 15, 15, 10, 1, 45, 45, 60, 45, 15, 1, 0, 315, 315, 210, 105, 21, 1, 1575, 1575, 1890, 1365, 630, 210, 28, 1, 0, 14175, 14175, 9450, 4725, 1638, 378, 36, 1, 99225, 99225, 113400, 80325, 38745, 14175, 3780, 630, 45, 1
Offset: 1

Views

Author

Karol A. Penson and Katarzyna Gorska, Jun 23 2015

Keywords

Comments

Explicit forms of the polynomials P(n,y) for n=1..6:
P(1,y) = y
P(2,y) = y + y^2
P(3,y) = 3*y^2 + y^3
P(4,y) = 3*y + 3*y^2 + 6*y^3 + 1*y^4
P(5,y) = 15*y^2 + 15*y^3 + 10*y^4 + 1*y^5
P(6,y) = 45*y + 45*y^2 + 60*y^3 + 45*y^4 + 15*y^5 + 1*y^6;
Sum(k=1..n, P(k,1) ) = A259239(n).
Also the Bell transform of the sequence "a(n)=n*doublefactorial(n-2)^2 if n is odd else 0^n". For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016

Examples

			Triangle begins:
  1;
  1,  1;
  0,  3,  1;
  3,  3,  6,  1;
  0, 15, 15, 10,  1;
		

Crossrefs

Cf. A259239.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n::even,0^n,n*doublefactorial(n-2)^2), 9); # Peter Luschny, Jan 29 2016
  • Mathematica
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    B = BellMatrix[Function[n, Which[n==0, 1, EvenQ[n], 0, True, n*(n-2)!!^2]], rows = 12];
    Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
  • PARI
    row(n) = x='x+O('x^(n+1));polcoeff(serlaplace(exp(y*(x-sqrt(1-x^2)+1))), n, 'x);
    tabl(nn) = for (n=1, nn, print(Vecrev(row(n)/y))) \\ Michel Marcus, Jun 23 2015

A259367 E.g.f.: exp(x-(1-x^3)^(1/3)+1).

Original entry on oeis.org

1, 1, 1, 3, 9, 21, 161, 911, 3473, 48329, 406241, 2150171, 44216921, 491897693, 3327845249, 90934644711, 1257256962081, 10352273016081, 353351881109313, 5836715156967219, 56621346170765481, 2319460179075419941, 44545835926727113441, 497433851743810193983, 23782590451590763744689
Offset: 0

Views

Author

Karol A. Penson and Katarzyna Gorska, Jun 25 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[E^(x-(1-x^3)^(1/3)+1), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 08 2021 *)

Formula

a(n) ~ n! * (exp(2) + 2*exp(1/2) * cos((4*Pi*n - 3*sqrt(3))/6)) / (3^(2/3)*Gamma(2/3)*n^(4/3)) * (1 - 3^(5/6)*Gamma(2/3)^2 / (2*Pi*n^(1/3))). - Vaclav Kotesovec, Jun 08 2021
Showing 1-2 of 2 results.