cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259254 Number of partitions of prime(n) into n primes.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 2, 2, 3, 7, 7, 12, 19, 19, 25, 44, 72, 72, 119, 147, 152, 234, 292, 435, 777, 920, 946, 1135, 1161, 1377, 3703, 4294, 5944, 5944, 10742, 10742, 14488, 18958, 22092, 28662, 37687, 37687, 63068, 63068, 72400, 72400, 132756, 233796, 265315, 265315
Offset: 1

Views

Author

Doug Bell, Jun 22 2015

Keywords

Comments

a(n) = number of partitions of A000040(n) into n primes.
If n > 1 and prime(n) - prime(n-1) = 2 (twin primes), then the number of partitions of prime(n) into n primes that don't contain 2 is equal to a(n) - a(n-1); every partition of primes in a(n) that does contain a 2 matches a partition of primes in a(n-1) with an added partition for 2. Further, if n is even, then a(n) = a(n-1).

Examples

			a(9) = 3 because 23 is the ninth prime number (A000040(9) = 23), and 23 can be partitioned into nine primes in three ways: [2,2,2,2,2,2,2,2,7], [2,2,2,2,2,2,3,3,5] and [2,2,2,2,3,3,3,3,3].
		

Crossrefs

Subsequence of A117278.
Cf. A000040.

Programs

  • Maple
    N:= 100:  # to get a(1) to a(N)
    Primes:= [seq(ithprime(i),i=1..N)]:
    W:= proc(n,m,j) option remember;
      if n < 0 then return 0 fi;
      if n=0 then if m=0 then return 1 else return 0 fi fi;
      add(W(n-Primes[i],m-1,i),i=1..j)
    end proc:
    seq(W(Primes[n],n,n), n = 1 .. N); # Robert Israel, Jun 22 2015
  • Mathematica
    f[n_] := Length@ IntegerPartitions[ Prime@n, {n}, Prime@ Range@ n]; Array[f, 50] (* Giovanni Resta, Jun 23 2015 *)
  • PARI
    a(n) = {nb = 0; forpart(p=prime(n), ok=1; for (k=1, n, if (!isprime(p[k]), ok=0; break));nb += ok,[2,prime(n)],[n,n]); nb;} \\ Michel Marcus, Jun 23 2015
    
  • Perl
    use ntheory ":all"; use List::MoreUtils qw/all/; sub a259254 { my($n,$sum)=(shift,0); forpart { $sum++ if all { is_prime($) } @; } nth_prime($n),{n=>$n,amin=>2}; $sum; } say a259254($) for 1..60; # _Dana Jacobsen, Dec 15 2015
    
  • Perl
    use ntheory ":all";
    use Memoize;  memoize 'W';
    sub W {
      my($n, $m, $j) = @_;
      return 0 if $n < 0;
      return ($m == 0) ? 1 : 0  if $n == 0;
      vecsum( map { W($n-nth_prime($), $m-1, $) } 1 .. $j );
    }
    sub A259254 { my $n = shift; W(nth_prime($n), $n, $n); }
    print "$A259254($"> ", A259254($),"\n" for 1..60; # Dana Jacobsen, Dec 15 2015

Formula

a(n) = A117278(A000040(n),n). - Robert Israel, Jun 22 2015