A006026 Number of column-convex polyominoes with perimeter n.
1, 3, 12, 54, 260, 1310, 6821, 36413, 198227, 1096259, 6141764, 34784432, 198828308, 1145544680, 6645621536, 38786564126, 227585926704, 1341757498470, 7944249448686, 47217102715624, 281615520373954, 1684957401786580, 10110628493454482, 60830401073611514
Offset: 1
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- M.-P. Delest, Utilisation des Langages Algébriques et du Calcul Formel Pour le Codage et l'Enumeration des Polyominos, Ph.D. Dissertation, Université Bordeaux I, May 1987. [Scanned copy, with permission. A very large file.]
- M.-P. Delest, Utilisation des Langages Algébriques et du Calcul Formel Pour le Codage et l'Enumeration des Polyominos, Ph.D. Dissertation, Université Bordeaux I, May 1987. (Annotated scanned copy of a small part of the thesis)
- M.-P. Delest, Generating functions for column-convex polyominoes, J. Combin. Theory Ser. A 48 (1988), no. 1, 12-31.
- Maylis P. Delest and Serge Dulucq, Enumeration of Directed Column-Convex Animals with a Given Perimeter and Area, Croatica Chemica Acta, 66 (1993), 59-80.
- G. S. Joyce and A. J. Guttmann, Exact results for the generating function of directed column-convex animals on the square lattice, J. Physics A: Math. General 27 (1994) 4359-4367.
Programs
-
Mathematica
a[1]=1;a[2]=1;a[3]=3; a[n_]/;n>=4 := a[n] = ( 2(n-1)(21n-34)a[n-1] - (3n-8)(23n-43)a[n-2] + 16(n-3)(2n-7)a[n-3] )/(5(n-1)n); Table[a[n],{n,10}] (* David Callan, Nov 29 2007 *)
Formula
The g.f. A(x) = x + x^2 + 3x^3 + ... satisfies A^3 - 3A^2 + (1+2x)A - x = 0. - David Callan, Nov 29 2007
Extensions
Delest thesis provided by M.-P. Delest and scanned by Simon Plouffe, Jan 16 2016
Comments