cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A006026 Number of column-convex polyominoes with perimeter n.

Original entry on oeis.org

1, 3, 12, 54, 260, 1310, 6821, 36413, 198227, 1096259, 6141764, 34784432, 198828308, 1145544680, 6645621536, 38786564126, 227585926704, 1341757498470, 7944249448686, 47217102715624, 281615520373954, 1684957401786580, 10110628493454482, 60830401073611514
Offset: 1

Views

Author

Keywords

Comments

With offset 2, a(n) = number of directed column-convex polyominoes with directed-site perimeter = n. Directed means every cell (unit square) is reachable from the lower left cell, which is assumed to touch the origin. The directed-site perimeter is the number of unit squares in the first quadrant outside the polyomino but sharing at least one side with it. For example, the polyomino consisting of only one cell (with vertices (0,0),(1,0),(1,1),(0,1)) has directed-site perimeter = 2 due to the squares just above and to the right of it. - David Callan, Nov 29 2007

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[1]=1;a[2]=1;a[3]=3; a[n_]/;n>=4 := a[n] = ( 2(n-1)(21n-34)a[n-1] - (3n-8)(23n-43)a[n-2] + 16(n-3)(2n-7)a[n-3] )/(5(n-1)n); Table[a[n],{n,10}] (* David Callan, Nov 29 2007 *)

Formula

The g.f. A(x) = x + x^2 + 3x^3 + ... satisfies A^3 - 3A^2 + (1+2x)A - x = 0. - David Callan, Nov 29 2007

Extensions

Delest thesis provided by M.-P. Delest and scanned by Simon Plouffe, Jan 16 2016
Showing 1-1 of 1 results.