cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259361 n occurs 2n+2 times.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 0

Views

Author

Keywords

Comments

Define the oblong root obrt(x) to be the (larger) solution of y * (y+1) = x; i.e., obrt(x) = sqrt(x+1/4) - 1/2. So obrt(x) is an integer iff x is an oblong number (A002378). Then a(n) = floor(obrt(n)).
a(n) gives (from the preceding comment) also the maximal number of parts of partitions of n with no part 1 and difference of parts at least two. See A003106, with the combinatorial interpretation of the sum of the Rogers-Ramanujan identity. - Wolfdieter Lang, Oct 29 2016

Crossrefs

Programs

  • Haskell
    a259361 = floor . subtract (1 / 2) . sqrt . (+ 1 / 4) . fromIntegral
    a259361_list = concat xss where
       xss = iterate (\(xs@(x:_)) -> map (+ 1) (x : x : xs)) [0, 0]
    -- Reinhard Zumkeller, Jul 09 2015
    
  • Magma
    [Floor((-1+Sqrt(1+4*n))/2): n in [0..85]]; // Vincenzo Librandi, Oct 30 2016
    
  • Mathematica
    Flatten[Table[PadLeft[{}, 2n + 2, n], {n, 0, 8}]] (* Alonso del Arte, Jun 30 2015 *)
    Table[Floor[(-1 + Sqrt[1 + 4 n])/2], {n, 0, 120}] (* Michael De Vlieger, Oct 31 2016 *)
  • Python
    from math import isqrt
    def A259361(n): return (m:=isqrt(n-1)-1)+(n-1>m*(m+3)) if n else 0 # Chai Wah Wu, Nov 07 2024

Formula

a(n) = A000194(n+1)-1.
a(n) = floor((-1 + sqrt(1+4*n))/2). See the first comment above. - Wolfdieter Lang, Oct 29 2016