cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A290944 Primes p such that sum of digits of p^3 is a perfect square.

Original entry on oeis.org

3, 1753, 1999, 2389, 2713, 3301, 3361, 3529, 3583, 3607, 3631, 3643, 3697, 3889, 3907, 4093, 4099, 4129, 4153, 4159, 4243, 4423, 4591, 4639, 4813, 5167, 5449, 5503, 5527, 5563, 5683, 5689, 5827, 6199, 6211, 6427, 6529, 6553, 6691, 6709, 6883, 6949, 6961, 6997
Offset: 1

Views

Author

K. D. Bajpai, Aug 14 2017

Keywords

Comments

All the terms in this sequence, except a(1), are congruent to 1 mod 3.
After a(1), all the terms are congruent to {1, 4, 7} mod 9.

Examples

			a(1) = 3 is prime: 3^3 = 27; 2 + 7 = 9 = 3^2.
a(2) = 1753 is prime: 1753^3 = 5386984777; 5 + 3 + 8 + 6 + 9 + 8 + 4 + 7 + 7 + 7 = 64 = 8^2.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsSquare(&+Intseq(p^3))];
    
  • Maple
    f:= n->add(d, d=convert(n^3, base, 10)):
    select(t -> type(sqrt(f(t)), integer), [seq(ithprime(m), m=1..10^3)]);
  • Mathematica
    Select[Prime[Range[2000]], IntegerQ[Sqrt[Plus @@ IntegerDigits[#^3]]] &]
  • PARI
    forprime(p=1, 5000, if(issquare(sumdigits(p^3)), print1(p, ", ")));
    
  • PARI
    is(n) = ispseudoprime(n) && issquare(sumdigits(n^3)) \\ Felix Fröhlich, Aug 14 2017
Showing 1-1 of 1 results.