cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259438 a(n) = Sum_{k=0..n} p(k)^(n-k), where p(k) is the partition function A000041.

Original entry on oeis.org

1, 2, 3, 5, 10, 25, 78, 301, 1414, 7964, 53408, 426116, 4028890, 44697755, 576491980, 8617031811, 149425700853, 3004591733938, 69763130950599, 1860330686377532, 56746090401472922, 1975156902590115291, 78299783319570477185, 3529323014512112469681
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 27 2015

Keywords

Comments

The position of the maximum value asymptotically approaches k = n/3.

Crossrefs

Programs

  • Mathematica
    Table[Sum[PartitionsP[k]^(n-k),{k,0,n}],{n,0,25}]

Formula

log(a(n)) ~ 2^(3/2)*Pi*n^(3/2)/9 - n*log(16*n^2/3)/3.
G.f.: Sum_{k>=0} x^k/(1 - p(k)*x). - Ilya Gutkovskiy, Oct 09 2018