A259465 Triangle read by rows: enumerates pairs of amicable permutations by rises.
1, 1, 1, 1, 1, 8, 1, 1, 43, 43, 1, 1, 194, 826, 194, 1, 1, 803, 11284, 11284, 803, 1, 1, 3184, 127905, 392244, 127905, 3184, 1, 1, 12367, 1297629, 10258067, 10258067, 1297629, 12367, 1, 1, 47606, 12295720, 224702858, 561134638, 224702858, 12295720, 47606, 1
Offset: 0
Examples
Triangle begins: 1; 1; 1, 1; 1, 8, 1; 1, 43, 43, 1; 1, 194, 826, 194, 1; 1, 803, 11284, 11284, 803, 1; 1, 3184, 127905, 392244, 127905, 3184, 1; 1, 12367, 1297629, 10258067, 10258067, 1297629, 12367, 1; ...
Links
- Alois P. Heinz, Rows n = 0..80, flattened
- Carlitz, L., Richard Scoville, and Theresa Vaughan, Enumeration of pairs of permutations and sequences, Bulletin of the American Mathematical Society 80.5 (1974): 881-884. [Annotated scanned copy]
- L. Carlitz, N. J. A. Sloane, and C. L. Mallows, Correspondence, 1975
Crossrefs
Row sums give A060350.
Programs
-
Maple
b:= proc(u, o, h) option remember; `if`(u+o=0, 1, expand( add(add(b(u-j, o+j-1, h+i-1), i=1..u+o-h)*x, j=1..u)+ add(add(b(u+j-1, o-j, h-i), i=1..h), j=1..o))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(0, n$2)): seq(T(n), n=0..10); # Alois P. Heinz, Jul 02 2015
-
Mathematica
b[u_, o_, h_] := b[u, o, h] = If[u+o == 0, 1, Expand[Sum[Sum[b[u-j, o+j-1, h+i-1], {i, 1, u+o-h}]*x, {j, 1, u}] + Sum[Sum[b[u+j-1, o-j, h-i], {i, 1, h}], {j, 1, o}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[0, n, n]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 12 2016, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Jul 02 2015