cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259471 Triangle read by rows: T(n,k) is the number of semi-regular relations on n nodes with each node having out-degree k (0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 19, 66, 19, 1, 1, 47, 916, 916, 47, 1, 1, 130, 16816, 91212, 16816, 130, 1, 1, 343, 373630, 12888450, 12888450, 373630, 343, 1, 1, 951, 9727010, 2411213698, 14334255100, 2411213698, 9727010, 951, 1, 1, 2615, 289374391, 575737451509, 22080097881081, 22080097881081, 575737451509, 289374391, 2615, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Examples

			Triangle begins:
  1;
  1,   1;
  1,   3,     1;
  1,   7,     7,     1;
  1,  19,    66,    19,     1;
  1,  47,   916,   916,    47,   1;
  1, 130, 16816, 91212, 16816, 130, 1;
  ...
		

Crossrefs

Columns k=1..3 are A001372, A003286, A005535.
Cf. A329228.

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, k_] := Product[SeriesCoefficient[Product[g = GCD[v[[i]], v[[j]] ]; (1 + x^(v[[j]]/g) + O[x]^(k + 1))^g, {j, 1, Length[v]}], {x, 0, k}], {i, 1, Length[v]}];
    T[n_, k_] := Module[{s = 0}, Do[s += permcount[p]*edges[p, k], {p, IntegerPartitions[n]}]; s/n!];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v,k)={prod(i=1, #v, polcoef(prod(j=1, #v, my(g=gcd(v[i],v[j])); (1 + x^(v[j]/g) + O(x*x^k))^g), k))}
    T(n,k)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p,k)); s/n!} \\ Andrew Howroyd, Sep 13 2020

Formula

T(n,k) = T(n,n-k). - Andrew Howroyd, Sep 13 2020

Extensions

Terms a(28) and beyond from Andrew Howroyd, Sep 13 2020