A003286 Number of semi-regular digraphs (with loops) on n unlabeled nodes with each node having out-degree 2.
1, 7, 66, 916, 16816, 373630, 9727010, 289374391, 9677492899, 359305262944, 14663732271505, 652463078546373, 31435363120551013, 1630394318463367718, 90570555840053284171, 5365261686125108336540, 337616338011820295406352, 22490263897737210321234701, 1581153614004788257326876764
Offset: 2
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..50
- S. A. Choudum and K. R. Parthasarathy, Semi-regular relations and digraphs, Nederl. Akad. Wetensch. Proc. Ser. A. {75}=Indag. Math. 34 (1972), 326-334.
- Steve Huntsman, Generalizing cyclomatic complexity via path homology, arXiv:2003.00944 [cs.SE], 2020.
- Sean A. Irvine, Illustration of A003286(3).
Programs
-
Mathematica
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m]; edges[v_, k_] := Product[SeriesCoefficient[Product[g = GCD[v[[i]], v[[j]]]; (1 + x^(v[[j]]/g) + O[x]^(k + 1))^g, {j, 1, Length[v]}], {x, 0, k}], {i, 1, Length[v]}]; a[n_] := Module[{s = 0}, Do[s += permcount[p]*edges[p, 2], {p, IntegerPartitions[n]}]; s/n!]; Table[a[n], {n, 2, 20}] (* Jean-François Alcover, Jul 20 2022, after Andrew Howroyd in A259471 *)
Extensions
a(7)-a(9) from Sean A. Irvine, Apr 11 2015
Terms a(10) and beyond from Andrew Howroyd, Sep 13 2020
Comments