cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A003286 Number of semi-regular digraphs (with loops) on n unlabeled nodes with each node having out-degree 2.

Original entry on oeis.org

1, 7, 66, 916, 16816, 373630, 9727010, 289374391, 9677492899, 359305262944, 14663732271505, 652463078546373, 31435363120551013, 1630394318463367718, 90570555840053284171, 5365261686125108336540, 337616338011820295406352, 22490263897737210321234701, 1581153614004788257326876764
Offset: 2

Views

Author

Keywords

Comments

The directed graphs in this sequence need not be connected, but each node must have out-degree 2. - Sean A. Irvine, Apr 09 2015

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A259471.
Cf. A129524.

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, k_] := Product[SeriesCoefficient[Product[g = GCD[v[[i]], v[[j]]]; (1 + x^(v[[j]]/g) + O[x]^(k + 1))^g, {j, 1, Length[v]}], {x, 0, k}], {i, 1, Length[v]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*edges[p, 2], {p, IntegerPartitions[n]}]; s/n!];
    Table[a[n], {n, 2, 20}] (* Jean-François Alcover, Jul 20 2022, after Andrew Howroyd in A259471 *)

Extensions

a(7)-a(9) from Sean A. Irvine, Apr 11 2015
Terms a(10) and beyond from Andrew Howroyd, Sep 13 2020

A005535 Number of semi-regular digraphs (with loops) on n unlabeled nodes with each node having out-degree 3.

Original entry on oeis.org

1, 19, 916, 91212, 12888450, 2411213698, 575737451509, 171049953499862, 61944438230597774, 26879022100485977540, 13773587720396658214925, 8231894671550187551622795, 5676740663627528580559535893, 4474748487205893704072253926113
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A259471.

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, k_] := Product[SeriesCoefficient[Product[g = GCD[v[[i]], v[[j]]]; (1 + x^(v[[j]]/g) + O[x]^(k + 1))^g, {j, 1, Length[v]}], {x, 0, k}], {i, 1, Length[v]}];
    a[n_] := Module[{s = 0}, Do[s += permcount[p]*edges[p, 3], {p, IntegerPartitions[n]}]; s/n!];
    Table[a[n], {n, 3, 20}] (* Jean-François Alcover, Jul 20 2022, after Andrew Howroyd in A259471 *)

Extensions

a(7) from Sean A. Irvine, Jul 07 2016
Terms a(8) and beyond from Andrew Howroyd, Sep 13 2020
Showing 1-2 of 2 results.