cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259476 Cayley's triangle of V numbers; triangle V(n,k), n >= 4, n <= k <= 2*n-4, read by rows.

Original entry on oeis.org

1, 2, 4, 3, 14, 14, 4, 32, 72, 48, 5, 60, 225, 330, 165, 6, 100, 550, 1320, 1430, 572, 7, 154, 1155, 4004, 7007, 6006, 2002, 8, 224, 2184, 10192, 25480, 34944, 24752, 7072, 9, 312, 3822, 22932, 76440, 148512, 167076, 100776, 25194, 10, 420, 6300, 47040, 199920, 514080, 813960, 775200, 406980, 90440, 11, 550, 9900, 89760, 471240, 1534896, 3197700, 4263600, 3517470, 1634380, 326876
Offset: 4

Views

Author

N. J. A. Sloane, Jul 03 2015

Keywords

Examples

			Triangle begins:
  1;
     2, 4;
        3, 14, 14;
            4, 32, 72,  48;
                5, 60, 225, 330,  165;
                    6, 100, 550, 1320, 1430, 572;
  ...
		

Crossrefs

Diagonals give A002057, A002058, A002059, A002060.
Row sums give A065096 (with a different offset).

Programs

  • Maple
    V := proc(n,x)
        local X,g,i ;
        X := x^2/(1-x) ;
        g := X^n ;
        for i from 1 to n-2 do
            g := diff(g,x) ;
        end do;
        x^2*g*2*(n-1)/n! ;
    end proc;
    A259476 := proc(n,k)
        V(k-n+2,x) ;
        coeftayl(%,x=0,n+2) ;
    end proc:
    for n from 4 to 14 do
        for k from n to 2*n-4 do
            printf("%d,",A259476(n,k)) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Jul 09 2015
  • Mathematica
    T[n_, m_] := 2 Binomial[m, n] Binomial[n-2, m-n+2]/(n-2);
    Table[T[n, m], {n, 4, 14}, {m, n, 2n-4}] // Flatten (* Jean-François Alcover, Apr 15 2023, after Vladimir Kruchinin *)
  • Maxima
    T(n,m):=if n<4 then 0 else (2*binomial(m,n)*binomial(n-2,m-n+2))/(n-2); /* Vladimir Kruchinin, Jan 27 2022 */

Formula

G.f.: (1-x*y*(1+2*y)-sqrt(1-2*x*y*(1+2*y)+x^2*y^2))^2/(4*y^4*(1+y)^2). - Vladimir Kruchinin, Jan 27 2022
T(n,m) = 2*C(m,n)*C(n-2,m-n+2)/(n-2), n>=4. - Vladimir Kruchinin, Jan 27 2022