A259476 Cayley's triangle of V numbers; triangle V(n,k), n >= 4, n <= k <= 2*n-4, read by rows.
1, 2, 4, 3, 14, 14, 4, 32, 72, 48, 5, 60, 225, 330, 165, 6, 100, 550, 1320, 1430, 572, 7, 154, 1155, 4004, 7007, 6006, 2002, 8, 224, 2184, 10192, 25480, 34944, 24752, 7072, 9, 312, 3822, 22932, 76440, 148512, 167076, 100776, 25194, 10, 420, 6300, 47040, 199920, 514080, 813960, 775200, 406980, 90440, 11, 550, 9900, 89760, 471240, 1534896, 3197700, 4263600, 3517470, 1634380, 326876
Offset: 4
Examples
Triangle begins: 1; 2, 4; 3, 14, 14; 4, 32, 72, 48; 5, 60, 225, 330, 165; 6, 100, 550, 1320, 1430, 572; ...
Links
- A. Cayley, On the partitions of a polygon, Proc. London Math. Soc., 22 (1891), 237-262 = Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 93ff.
Crossrefs
Programs
-
Maple
V := proc(n,x) local X,g,i ; X := x^2/(1-x) ; g := X^n ; for i from 1 to n-2 do g := diff(g,x) ; end do; x^2*g*2*(n-1)/n! ; end proc; A259476 := proc(n,k) V(k-n+2,x) ; coeftayl(%,x=0,n+2) ; end proc: for n from 4 to 14 do for k from n to 2*n-4 do printf("%d,",A259476(n,k)) ; end do: printf("\n") ; end do: # R. J. Mathar, Jul 09 2015
-
Mathematica
T[n_, m_] := 2 Binomial[m, n] Binomial[n-2, m-n+2]/(n-2); Table[T[n, m], {n, 4, 14}, {m, n, 2n-4}] // Flatten (* Jean-François Alcover, Apr 15 2023, after Vladimir Kruchinin *)
-
Maxima
T(n,m):=if n<4 then 0 else (2*binomial(m,n)*binomial(n-2,m-n+2))/(n-2); /* Vladimir Kruchinin, Jan 27 2022 */
Formula
G.f.: (1-x*y*(1+2*y)-sqrt(1-2*x*y*(1+2*y)+x^2*y^2))^2/(4*y^4*(1+y)^2). - Vladimir Kruchinin, Jan 27 2022
T(n,m) = 2*C(m,n)*C(n-2,m-n+2)/(n-2), n>=4. - Vladimir Kruchinin, Jan 27 2022