A259486 a(n) = 3*n^2 - 3*n + 1 + 6*floor((n-1)*(n-2)/6).
1, 7, 19, 43, 73, 109, 157, 211, 271, 343, 421, 505, 601, 703, 811, 931, 1057, 1189, 1333, 1483, 1639, 1807, 1981, 2161, 2353, 2551, 2755, 2971, 3193, 3421, 3661, 3907, 4159, 4423, 4693, 4969, 5257, 5551, 5851, 6163, 6481, 6805, 7141, 7483, 7831, 8191, 8557
Offset: 1
Examples
----------------------------------------------------------------------- Figure 1 ----------------------------------------------------------------------- __ __ __ / \__/ \__/ \ \_*/ \__/ \*_/ __ __/ \__/ \__/ \__ __/ \__ / \__/ \__/ \__/ \ __ __/ \__/ \__ \__/ \__/ \__/ \__/ __/ \__ / \__/ \__/ \ __/ \__/ \__/ \__/ \__ .__ / \__/ \ \__/ \__/ \__/ / *\__/ \__/ \__/ \__/* \ / \ \__/ \__/ / \__/ \__/ \ \__/ \__/ \__/ \__/ \__/ \__/ / \__/ \ \__/ \__/ \__/ \__/ \__/ \__/ \__/ \__/ \__/ / \__/ \__/ \ / \__/ \__/ \__/ \ \__/ \__/ \__/ \__/ \__/ \__/ \__/ \__/ \__/ \__/ \__/ \__/ \__/ \__/ / *\__/ \__/* \ \__/ \__/ \__/ n=1 n=2 n=3 n=4 ----------------------------------------------------------------------- Table 1 ----------------------------------------------------------------------- a(1) = 1 = 1 a(2) = 3 + 2(2) = 7 a(3) = 5 + 2(3+4) = 19 a(4) = 7 + 2(4+5+6) + 6(1) = 43 a(5) = 9 + 2(5+6+7+8) + 6(2) = 73 a(6) = 11 + 2(6+7+8+9+10) + 6(3) = 109 a(7) = 13 + 2(7+8+9+10+11+12) + 6(5) = 157 ...
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
Programs
-
Magma
[3*n^2 - 3*n + 1 + 6*Floor((n-1)*(n-2)/6) : n in [1..100]];
-
Magma
I:=[1,7,19,43,73]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-3)-2*Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Jul 14 2015
-
Maple
A259486:=n->3*n^2 - 3*n + 1 + 6*floor((n-1)*(n-2)/6): seq(A259486(n), n=1..100);
-
Mathematica
Table[3 n^2 - 3 n + 1 + 6 Floor[(n - 1) (n - 2)/6], {n, 50}] (* or *) CoefficientList[Series[(1 + 5 x + 6 x^2 + 11 x^3 + x^4)/((1 - x)^3 (1 + x + x^2)), {x, 0, 50}], x] LinearRecurrence[{2, -1, 1, -2, 1}, {1, 7, 19, 43, 73}, 50]; (* Vincenzo Librandi, Jul 14 2015 *)
Formula
G.f.: (1+5*x+6*x^2+11*x^3+x^4)/((1-x)^3*(1+x+x^2)).
a(n) = 2*a(n-1)-a(n-2)+a(n-3)-2*a(n-4)+a(n-5), n>5.
From Robert Israel, Jun 29 2015: (Start)
a(n) = 4*n^2 - 6*n + 1 if 3 divides n, 4*n^2 - 6*n + 3 otherwise.
a(n) = 1 + 6 * A000969(n-2) for n >= 2. (End)
a(n) = 4*n^2 - 6*n + 3^sign(n mod 3). - Wesley Ivan Hurt, Jul 13 2015
Comments