A259505 Primes p where an integer r with 1 < r < p exists such that r^r == 1 (mod p^2).
997, 8647, 47521, 85991, 283411, 4594451, 5476381, 52728733, 53920829, 100980223, 127072849, 436118521, 585293099, 858905011
Offset: 1
Examples
252^252 = 1 mod 997^2. 5764^5764 = 1 mod 8647^2.
Programs
-
Mathematica
p = 2; lst = {}; While[p < 100001, r = 2; While[r < p, If[ PowerMod[r, r, p^2] == 1, AppendTo[lst, p]]; r++]; p = NextPrime@ p] (* Robert G. Wilson v, Dec 06 2015 *)
-
PARI
forprime(p=1, , for(r=2, p-1, if(Mod(r, p^2)^r==1, print1(p, ", "); break({1}))))
Extensions
a(5)-a(14) from Hiroaki Yamanouchi, Dec 19 2015
Comments