cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259529 Expansion of psi(-x^3)^2 / psi(-x) in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 1, 0, 1, 2, 2, 2, 3, 3, 3, 3, 5, 6, 5, 6, 8, 9, 10, 10, 13, 15, 15, 17, 20, 23, 24, 25, 30, 34, 36, 39, 45, 50, 53, 57, 65, 73, 77, 83, 94, 104, 110, 118, 132, 145, 154, 166, 185, 201, 214, 230, 253, 276, 293, 316, 346, 375, 399, 427, 467, 505, 537, 575
Offset: 0

Views

Author

Michael Somos, Jun 29 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^2 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 3*x^9 + ...
G.f. = q^5 + q^13 + q^21 + q^37 + 2*q^45 + 2*q^53 + 2*q^61 + 3*q^69 + ...
		

Crossrefs

Cf. A259538.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{ -1, 0, 1, -1, -1, 0, -1, -1, 1, 0, -1, 1}[[Mod[k, 12, 1]]], {k, n}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^3, x^6] QPochhammer[ x^12])^2 / ( QPochhammer[ x, x^2] QPochhammer[ x^4]), {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 1, -1, 0, 1, -1, -1, 0, -1, -1, 1, 0, -1][k%12 + 1]), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n);polcoeff( eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^12 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^2), n))};

Formula

Expansion of f(x, x^5)^2 / f(x) in powers of x where f(,) is the general Ramanujan theta function.
Expansion of q^(-5/8) * eta(q^2) * eta(q^3)^2 * eta(q^12)^2 / (eta(q) * eta(q^4) * eta(q^6)^2) in powers of q.
Euler transform of period 12 sequence [ 1, 0, -1, 1, 1, 0, 1, 1, -1, 0, 1, -1, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (768 t)) = (16/3)^1/2 (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A259538.
G.f.: Product_{k>0} (1 + x^k + x^(2*k)) * (1 - x^(3*k)) * (1 - x^(2*k) + x^(4*k)) * (1 + x^(6*k)).
a(n) ~ exp(Pi*sqrt(n/6)) / (6*sqrt(n)). - Vaclav Kotesovec, Jul 11 2016