cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259538 Expansion of psi(-x)^2 / psi(-x^3) in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 1, -1, 0, 1, 2, -2, 1, 1, -2, 0, 1, -4, 1, 1, -2, 2, 3, -2, 2, 1, -4, 2, 2, -6, 3, 2, -4, 3, 2, -6, 3, 4, -8, 3, 5, -10, 5, 3, -10, 6, 7, -10, 5, 8, -12, 6, 7, -16, 8, 7, -16, 9, 9, -18, 10, 10, -22, 10, 11, -26, 13, 12, -26, 15, 14, -28, 15, 17, -34
Offset: 0

Views

Author

Michael Somos, Jun 30 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + x^2 - x^3 + x^5 + 2*x^6 - 2*x^7 + x^8 + x^9 - 2*x^10 + ...
G.f. = 1/q - 2*q^7 + q^15 - q^23 + q^39 + 2*q^47 - 2*q^55 + q^63 + ...
		

Crossrefs

Cf. A259529.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{ 2, 0, 1, 2, 2, 0, 2, 2, 1, 0, 2, 1}[[Mod[k, 12, 1]]], {k, n}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x, x^2] QPochhammer[ x^4])^2 / ( QPochhammer[ x^3, x^6] QPochhammer[ x^12]), {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 1, 2, 0, 1, 2, 2, 0, 2, 2, 1, 0, 2][k%12 + 1]), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^6 + A) / (eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A)), n))};

Formula

Expansion of q^(1/8) * eta(q)^2 * eta(q^4)^2 * eta(q^6) / (eta(q^2)^2 * eta(q^3) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ -2, 0, -1, -2, -2, 0, -2, -2, -1, 0, -2, -1, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (768 t)) = 12 (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A259529.
G.f.: Product_{k>0} (1 - x^k) * (1 + x^(2*k)) / ((1 + x^k + x^(2*k)) * (1 - x^(2*k) + x^(4*k))).

A259660 Expansion of f(-x, -x^11) * psi(-x^3)^2 / psi(-x) in powers of x where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 0, 0, -1, 1, 1, 0, 0, 1, 0, 0, -1, 1, 0, 0, 1, 1, -1, 0, -1, 2, 1, 0, 0, 0, 1, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, -1, 1, 0, 0, 0, 1, -1, 0, -1, 0, 1, 0, 2, 1, 0, 0, -2, 2, 0, 0, 0, 1, 1, 0, -1, 0, 1, 0, 0, 2, -1, 0, 0, 1, 0, 0, 0, 1, -1
Offset: 0

Views

Author

Michael Somos, Jul 02 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x^3 + x^4 + x^5 + x^8 - x^11 + x^12 + x^15 + x^16 - x^17 - x^19 + ...
G.f. = q^5 - q^14 + q^17 + q^20 + q^29 - q^38 + q^41 + q^50 + q^53 - q^56 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{ 0, 2, 0, 0, 1, -1, -1, 0, -1, -1, 1, 0}[[Mod[ k, 12, 1]]], {k, n}], {x, 0, n}];
    QP:= QPochhammer; a[n_]:= SeriesCoefficient[(QP[x, x^12]*QP[x^11,x^12]* QP[x^12]*QP[x^3, -x^3]^2*QP[x^6]^2)/(QP[x, -x]*QP[x^2]), {x, 0, n}]; Table[a[n], {n, 0, 100}] (* G. C. Greubel, Mar 17 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k)^([ 2, 0, 0, 1, -1, -1, 0, -1, -1, 1, 0, 0][k%12 + 1]), 1 + x * O(x^n)), n))};

Formula

Expansion of f(-x, -x^11) * f(x, x^5)^2 / f(x) in powers of x where f(,) is the Ramanujan general theta function.
Euler transform of period 12 sequence [ 0, 0, -1, 1, 1, 0, 1, 1, -1, 0, 0, -2, ...].
a(4*n) = A121444(n). a(4*n + 1) = a(n - 1). a(4*n + 2) = 0.
Convolution of A247133 and A259529.
Showing 1-2 of 2 results.