cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259555 a(n) = 2*n^2 - 2*n + 17.

Original entry on oeis.org

17, 21, 29, 41, 57, 77, 101, 129, 161, 197, 237, 281, 329, 381, 437, 497, 561, 629, 701, 777, 857, 941, 1029, 1121, 1217, 1317, 1421, 1529, 1641, 1757, 1877, 2001, 2129, 2261, 2397, 2537, 2681, 2829, 2981, 3137, 3297, 3461, 3629, 3801, 3977, 4157, 4341, 4529
Offset: 1

Views

Author

Kival Ngaokrajang, Jun 30 2015

Keywords

Comments

a(n) is the curvature of the n-th touching circle in the area below the counterclockwise Pappus chain and the left semicircle of the arbelos with radii r0 = 2/3, r1 = 1/3. See illustration in the links.

Crossrefs

Cf. A114949, A242412 (for r0 = 1/2 = r1).

Programs

  • Mathematica
    Table[2*n^2 - 2*n + 17, {n, 50}] (* Wesley Ivan Hurt, Feb 04 2017 *)
    LinearRecurrence[{3,-3,1},{17,21,29},50] (* Harvey P. Dale, Apr 28 2017 *)
  • PARI
    a(n)=2*n^2-2*n+17
    for (n=1,100,print1(a(n),", "))
    
  • PARI
    Vec(-x*(17*x^2-30*x+17)/(x-1)^3 + O(x^100)) \\ Colin Barker, Jul 01 2015

Formula

a(n) = 2*n^2 - 2*n + 17.
Descartes three circle theorem: a(n) = 3/2 + c(n) + c(n-1) + 2*sqrt(3*(c(n)+c(n-1))/2 + c(n)*c(n-1)), with c(n) = A114949(n)/2 = (n^2 + 6)/2, producing 2*n^2 - 2*n + 17. - Wolfdieter Lang, Jun 30 2015
From Colin Barker, Jul 01 2015: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -x*(17*x^2 - 30*x + 17)/(x-1)^3. (End)
E.g.f.: exp(x)*(2*x^2 + 17) - 17. - Elmo R. Oliveira, Nov 17 2024

Extensions

Edited by Wolfdieter Lang, Jun 30 2015