A259595 Numerators of the other-side convergents to sqrt(6).
3, 7, 27, 71, 267, 703, 2643, 6959, 26163, 68887, 258987, 681911, 2563707, 6750223, 25378083, 66820319, 251217123, 661452967, 2486793147, 6547709351, 24616714347, 64815640543, 243680350323, 641608696079, 2412186788883, 6351271320247, 23878187538507
Offset: 0
Examples
For r = sqrt(6), the first 7 other-side convergents are 3, 7/3, 27/11, 71/29, 267/109, 703/287, 2643/1079. A comparison of convergents with other-side convergents: i p(i)/q(i) P(i)/Q(i) p(i)*Q(i)-P(i)*q(i) 0 2/1 < sqrt(6) < 3/1 -1 1 5/2 > sqrt(6) > 7/3 1 2 22/9 < sqrt(6) < 27/11 -1 3 49/20 > sqrt(6) > 71/29 1 4 218/89 < sqrt(6) < 267/109 -1 5 485/198 > sqrt(6) > 703/287 1
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,10,0,-1).
Programs
-
Mathematica
r = Sqrt[6]; a[i_] := Take[ContinuedFraction[r, 35], i]; b[i_] := ReplacePart[a[i], i -> Last[a[i]] + 1]; t = Table[FromContinuedFraction[b[i]], {i, 1, 35}] u = Denominator[t] (* A259594 *) v = Numerator[t] (* A259595 *) LinearRecurrence[{0,10,0,-1},{3,7,27,71},30] (* Harvey P. Dale, Mar 21 2023 *)
-
PARI
Vec((x^3-3*x^2+7*x+3)/(x^4-10*x^2+1) + O(x^50)) \\ Colin Barker, Jul 21 2015
Formula
p(i)*Q(i) - P(i)*q(i) = (-1)^(i+1), for i >= 0, where a(i) = P(i).
a(n) = 10*a(n-2) - a(n-4) for n>3. - Colin Barker, Jul 21 2015
G.f.: (x^3-3*x^2+7*x+3) / (x^4-10*x^2+1). - Colin Barker, Jul 21 2015
Comments