A259633 a(n) = number of inequivalent necklaces with beads labeled 1/i (1 <= i <= n) such that the sum of the beads is 1 and the smallest bead is 1/n.
1, 1, 1, 2, 1, 12, 1, 43, 132, 547, 1, 7834, 1, 30442, 608887, 3834978, 1, 84536629, 1, 3030450058, 79538220753, 16701983083, 1, 4136127573912, 26625599501697, 2730194738935
Offset: 1
Examples
a(6) = 12 because a pie can be made in the following twelve ways (moving clockwise from a 1/6): 1 = 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6, 1 = 1/6 + 1/6 + 1/6 + 1/4 + 1/4, 1 = 1/6 + 1/6 + 1/4 + 1/6 + 1/4, 1 = 1/6 + 1/4 + 1/4 + 1/3, 1 = 1/6 + 1/4 + 1/3 + 1/4, 1 = 1/6 + 1/3 + 1/4 + 1/4, 1 = 1/6 + 1/6 + 1/6 + 1/2, 1 = 1/6 + 1/6 + 1/6 + 1/6 + 1/3, 1 = 1/6 + 1/6 + 1/3 + 1/3, 1 = 1/6 + 1/3 + 1/6 + 1/3, 1 = 1/6 + 1/3 + 1/2, 1 = 1/6 + 1/2 + 1/3. Notice that the bottom two pies are chiral copies of one another.
Crossrefs
Cf. A092666.
Formula
a(p) = 1 for all primes.
Extensions
a(6) corrected, a(8) confirmed, a(9)-a(17) added by Alois P. Heinz, Jul 28 2015
a(18)-a(23) from Alois P. Heinz, Jul 30 2015
a(24)-a(26) from Alois P. Heinz, Sep 01 2015
Comments