cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259645 Numbers m such that m^2 + 1, 3*m - 1 and m^2 + m + 41 are all prime.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 16, 20, 24, 36, 66, 90, 94, 116, 120, 134, 150, 156, 160, 206, 240, 280, 340, 350, 384, 396, 430, 436, 470, 536, 634, 690, 700, 714, 780, 826, 864, 930, 946, 960, 1004, 1124, 1150, 1176, 1294, 1316, 1376, 1410, 1430, 1494, 1644, 1674
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 03 2015

Keywords

Comments

This sequence is infinite if the generalized Dickson's conjecture holds.

Examples

			.            | (i, j, k) such that |        corresponding
.            | a(n) = A005574(i)   |        prime triples
.     |      |      = A087370(j)   |        let m = a(n):
.   n | a(n) |      = A056561(k)   |  (m^2+1, 3*m-1, m^2+m+41)
.  ---+------+---------------------+--------------------------
.   1 |    1 |     (1,  1,  2)     |        (2,   2,   43)
.   2 |    2 |     (2,  2,  3)     |        (5,   5,   47)
.   3 |    4 |     (3,  3,  5)     |       (17,  11,   61)
.   4 |    6 |     (4,  4,  7)     |       (37,  17,   83)
.   5 |   10 |     (5,  6, 11)     |      (101,  29,  151)
.   6 |   14 |     (6,  7, 13)     |      (197,  41,  251)
.   7 |   16 |     (7,  8, 15)     |      (257,  47,  313)
.   8 |   20 |     (8, 10, 21)     |      (401,  59,  461)
.   9 |   24 |     (9, 11, 25)     |      (597,  71,  641)
.  10 |   36 |    (11, 15, 37)     |     (1297, 107, 1373)
.  11 |   66 |    (15, 24, 61)     |     (4357, 197, 4463)
.  12 |   90 |    (18, 31, 79)     |     (8101, 269, 8231)  .
		

Crossrefs

Intersection of A005574, A087370 and A056561.

Programs

  • Haskell
    import Data.List.Ordered (isect)
    a259645 n = a259645_list !! (n-1)
    a259645_list = a005574_list `isect` a087370_list `isect` a056561_list
  • Mathematica
    Select[Range[100], AllTrue[{#^2 + 1, 3 # - 1, #^2 + # + 41}, PrimeQ] &] (* Robert Price, Apr 19 2025 *)