A259645 Numbers m such that m^2 + 1, 3*m - 1 and m^2 + m + 41 are all prime.
1, 2, 4, 6, 10, 14, 16, 20, 24, 36, 66, 90, 94, 116, 120, 134, 150, 156, 160, 206, 240, 280, 340, 350, 384, 396, 430, 436, 470, 536, 634, 690, 700, 714, 780, 826, 864, 930, 946, 960, 1004, 1124, 1150, 1176, 1294, 1316, 1376, 1410, 1430, 1494, 1644, 1674
Offset: 1
Keywords
Examples
. | (i, j, k) such that | corresponding . | a(n) = A005574(i) | prime triples . | | = A087370(j) | let m = a(n): . n | a(n) | = A056561(k) | (m^2+1, 3*m-1, m^2+m+41) . ---+------+---------------------+-------------------------- . 1 | 1 | (1, 1, 2) | (2, 2, 43) . 2 | 2 | (2, 2, 3) | (5, 5, 47) . 3 | 4 | (3, 3, 5) | (17, 11, 61) . 4 | 6 | (4, 4, 7) | (37, 17, 83) . 5 | 10 | (5, 6, 11) | (101, 29, 151) . 6 | 14 | (6, 7, 13) | (197, 41, 251) . 7 | 16 | (7, 8, 15) | (257, 47, 313) . 8 | 20 | (8, 10, 21) | (401, 59, 461) . 9 | 24 | (9, 11, 25) | (597, 71, 641) . 10 | 36 | (11, 15, 37) | (1297, 107, 1373) . 11 | 66 | (15, 24, 61) | (4357, 197, 4463) . 12 | 90 | (18, 31, 79) | (8101, 269, 8231) .
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Wikipedia, Bunyakovsky conjecture
- Wikipedia, Dickson's conjecture
Programs
-
Haskell
import Data.List.Ordered (isect) a259645 n = a259645_list !! (n-1) a259645_list = a005574_list `isect` a087370_list `isect` a056561_list
-
Mathematica
Select[Range[100], AllTrue[{#^2 + 1, 3 # - 1, #^2 + # + 41}, PrimeQ] &] (* Robert Price, Apr 19 2025 *)
Comments