cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259676 Heptagonal numbers (A000566) that are semiprimes (A001358).

Original entry on oeis.org

34, 55, 235, 403, 469, 697, 1177, 1651, 2059, 2839, 4141, 5221, 6943, 9211, 9517, 13213, 13579, 21949, 23377, 25351, 29539, 31753, 34633, 37027, 53071, 62173, 68641, 74563, 78943, 93799, 96727, 118483, 130759, 144841, 164737, 171217, 187279, 191407, 196981
Offset: 1

Views

Author

Colin Barker, Jul 03 2015

Keywords

Comments

For these semiprimes k*(5*k-3)/2, the corresponding k are listed in A114517.

Examples

			The heptagonal number 34 is in the sequence because 34 = 2 * 17.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [s: n in [2..300] | IsSemiprime(s) where s is n*(5*n-3) div 2]; // Vincenzo Librandi, Jul 04 2015
  • Mathematica
    a={}; Do[If[PrimeOmega[n (5 n - 3) / 2]==2, AppendTo[a, n(5 n - 3) / 2]], {n, 1, 200}]; a (* Vincenzo Librandi, Jul 04 2015 *)
    Select[PolygonalNumber[7,Range[300]],PrimeOmega[#]==2&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 07 2021 *)
  • PARI
    pg(m, n) = (n^2*(m-2)-n*(m-4))/2 \\ n-th m-gonal number
    select(n->bigomega(n)==2, vector(2000, n, pg(7, n)))
    

Formula

Equals A000566 intersect A001358.