cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259748 a(n) = (Sum_{0

Original entry on oeis.org

0, 0, 2, 3, 0, 1, 0, 2, 6, 0, 0, 5, 0, 7, 10, 4, 0, 12, 0, 15, 14, 11, 0, 22, 0, 0, 18, 21, 0, 5, 0, 8, 22, 0, 0, 15, 0, 19, 26, 10, 0, 28, 0, 33, 30, 23, 0, 44, 0, 0, 34, 39, 0, 9, 0, 14, 38, 0, 0, 25, 0, 31, 42, 16, 0, 44, 0, 51, 46, 35, 0, 66, 0, 0, 50
Offset: 1

Views

Author

Keywords

Comments

{a(n)/n: n=1,2,...} = {0, 1/6, 1/4, 5/12, 1/2, 2/3, 3/4, 11/12}.
From Danny Rorabaugh, Oct 22 2015: (Start)
a(n)/n = 0 iff n mod 24 = 1,2,5,7,10,11,13,17,19,23 (A259749);
a(n)/n = 1/6 iff n mod 24 = 6 (A259752);
a(n)/n = 1/4 iff n mod 24 = 8,16 (A259751);
a(n)/n = 5/12 iff n mod 24 = 12 (A073762);
a(n)/n = 1/2 iff n mod 24 = 14,22 (A259750);
a(n)/n = 2/3 iff n mod 24 = 3,9,15,18,21 (A259754);
a(n)/n = 3/4 iff n mod 24 = 4,20 (A259755);
a(n)/n = 11/12 iff n mod 24 = 0 (A008606).
(End)

Crossrefs

Cf. A000914,
A259749 (n such that a(n)=0),
A259750 (n such that n/a(n)=2),
A259751 (n such that n/a(n)=4),
A259752 (n such that n/a(n)=6),
A073762 (n such that n/a(n)=12/5),
A259754 (n such that n/a(n)=3/2),
A259755 (n such that n/a(n)=4/3),
A008606 (n such that n/a(n)=12/11).

Programs

  • Mathematica
    A[n_]:=Sum[a b,{a,1,n},{b,a+1,n}];Table[Mod[A[n],n],{n,1,122}]
  • PARI
    vector(100, n, ((n-1)*n*(n+1)*(3*n+2)/24) % n) \\ Altug Alkan, Oct 22 2015

Formula

a(n) = A000914(n) mod n = (1/24)*(-1 + n)*n*(1 + n)*(2 + 3*n) mod n.
a(24k) = 22k; a(24k+1) = 0; a(24k+2) = 0; a(24k+3) = 16k+2; a(24k+4) = 18k+3; a(24k+5) = 0; a(24k+6) = 4k+1, a(24k+7) = 0; a(24k+8) = 6k+2; a(24k+9) = 16k+6; a(24k+10) = 0; a(24k+11) = 0; a(24k+12) = 10k+5; a(24k+13) = 0; a(24k+14) = 12k+7; a(24k+15) = 16k+10; a(24k+16) = 6k+4; a(24k+17) = 0; a(24k+18) = 16k+12; a(24k+19) = 0; a(24k+20) = 18k+15; a(24k+21) = 16k+14; a(24k+22) = 12k+11; a(24k+23) = 0. - Danny Rorabaugh, Oct 22 2015