cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A008606 Multiples of 24.

Original entry on oeis.org

0, 24, 48, 72, 96, 120, 144, 168, 192, 216, 240, 264, 288, 312, 336, 360, 384, 408, 432, 456, 480, 504, 528, 552, 576, 600, 624, 648, 672, 696, 720, 744, 768, 792, 816, 840, 864, 888, 912, 936, 960, 984, 1008, 1032, 1056, 1080, 1104, 1128, 1152, 1176, 1200
Offset: 0

Views

Author

Keywords

Comments

If n is a multiple of 24, also the sum of the divisors of n-1 is a multiple of 24. - Vincenzo Librandi, Apr 12 2014
This is the sequence of numbers n such that A259748(n)/n = 11/12. - Danny Rorabaugh, Oct 22 2015

Crossrefs

Programs

Formula

G.f.: 24*x/(1-x)^2. - Vincenzo Librandi, Jun 11 2013
a(n) = 24*A001477(n) - Danny Rorabaugh, Oct 24 2015
E.g.f.: 24*x*exp(x). - Stefano Spezia, Mar 02 2025

A073762 a(n) = 24*n - 12.

Original entry on oeis.org

12, 36, 60, 84, 108, 132, 156, 180, 204, 228, 252, 276, 300, 324, 348, 372, 396, 420, 444, 468, 492, 516, 540, 564, 588, 612, 636, 660, 684, 708, 732, 756, 780, 804, 828, 852, 876, 900, 924, 948, 972, 996, 1020, 1044, 1068, 1092, 1116, 1140, 1164, 1188, 1212
Offset: 1

Views

Author

Labos Elemer, Aug 08 2002

Keywords

Comments

Previous name: "Smallest unrelated number belonging to a term of this sequence equals 8."
This is also the list of numbers k such that A259748(k)/k = 5/12. - José María Grau Ribas, Jul 12 2015.
Also the total number of line segments creating a stellated octahedron, where the length of each stellated edge equals n-1, and where the octahedron has 12 edges, each fixed at unit length. - Peter M. Chema, Apr 28 2016

Examples

			URSet[12] = {8,9,10} so 12 is here.
		

Crossrefs

Programs

  • Magma
    [24*n-12: n in [1..60]]; // Vincenzo Librandi, Jun 15 2011
  • Mathematica
    tn[x_] := Table[w, {w, 1, x}]; di[x_] := Divisors[x]; dr[x_] := Union[di[x], rrs[x]]; rrs[x_] := Flatten[Position[GCD[tn[x], x], 1]]; unr[x_] := Complement[tn[x], dr[x]]; Do[s=Min[unr[n]]; If[Equal[s, 8], Print[n]], {n, 1, 1000}]
    Range[12, 2000, 24] (* Vladimir Joseph Stephan Orlovsky, Jun 14 2011 *)
  • PARI
    a(n)=24*n-12 \\ Charles R Greathouse IV, Jun 14 2011
    
  • PARI
    x='x+O('x^100); Vec(12*(1+x)/(1-x)^2) \\ Altug Alkan, Oct 22 2015
    

Formula

Min{URS[m]} = 8, where UNR[m] = Complement[RRS[m], Divisors[m]].
a(n) = 24*n - 12. - Max Alekseyev, Mar 03 2007
a(n) = 12*A005408(n-1). - Danny Rorabaugh, Oct 22 2015
G.f.: 12*x*(1 + x)/(1 - x)^2. - Ilya Gutkovskiy, Apr 28 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/48. - Amiram Eldar, Feb 28 2023
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 12*(exp(x)*(2*x - 1) + 1).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

A259750 Numbers that are congruent to {14, 22} mod 24.

Original entry on oeis.org

14, 22, 38, 46, 62, 70, 86, 94, 110, 118, 134, 142, 158, 166, 182, 190, 206, 214, 230, 238, 254, 262, 278, 286, 302, 310, 326, 334, 350, 358, 374, 382, 398, 406, 422, 430, 446, 454, 470, 478, 494, 502, 518, 526, 542, 550, 566, 574, 590, 598, 614, 622, 638
Offset: 1

Views

Author

Keywords

Comments

Original name: Numbers n such that n/A259748(n) = 2.

Crossrefs

Programs

  • Mathematica
    A[n_] := A[n] = Sum[a b, {a, 1,  n}, {b, a + 1, n}] ; Select[Range[600], Mod[A[#], #]/# == 1/2 & ]
  • PARI
    vector(100, n, 2*(6*n-(-1)^n)) \\ Altug Alkan, Oct 23 2015
    
  • PARI
    Vec(2*x*(7+4*x+x^2)/((1-x)^2*(1+x)) + O(x^100)) \\ Colin Barker, Aug 26 2016

Formula

A259748(a(n))/a(n) = 1/2.
a(n) = 2*A168489(n) - Danny Rorabaugh, Oct 22 2015
From Colin Barker, Aug 26 2016: (Start)
a(n) = a(n-1)+a(n-2)-a(n-3) for n>3.
G.f.: 2*x*(7+4*x+x^2) / ((1-x)^2*(1+x)).
(End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/24 - log(2+sqrt(3))/(4*sqrt(3)). - Amiram Eldar, Dec 31 2021
E.g.f.: 2*(1 + 6*x*exp(x) - exp(-x)). - David Lovler, Sep 06 2022

Extensions

Better name from Danny Rorabaugh, Oct 22 2015

A259755 Numbers that are congruent to {4, 20} mod 24.

Original entry on oeis.org

4, 20, 28, 44, 52, 68, 76, 92, 100, 116, 124, 140, 148, 164, 172, 188, 196, 212, 220, 236, 244, 260, 268, 284, 292, 308, 316, 332, 340, 356, 364, 380, 388, 404, 412, 428, 436, 452, 460, 476, 484, 500, 508, 524, 532, 548, 556, 572, 580, 596, 604, 620, 628
Offset: 1

Views

Author

Keywords

Crossrefs

Other sequences of numbers k such that A259748(k)/k equals a constant: A008606, A073762, A259749, A259750, A259751, A259752, A259754.

Programs

  • Magma
    [2*(6*n+(-1)^n-3): n in [1..60]]; // Vincenzo Librandi, Aug 27 2015
    
  • Mathematica
    A[n_] := A[n] = Sum[a b, {a, 1,n}, {b, a + 1, n}]; Select[Range[200], Mod[A[#], #]/# == 3/4 &]
    Table[2 (6 n + (-1)^n - 3), {n, 1, 60}] (* Bruno Berselli, Oct 23 2015 *)
    LinearRecurrence[{1,1,-1},{4,20,28},60] (* Harvey P. Dale, Jul 19 2016 *)
  • PARI
    vector(100, n, 2*(6*n+(-1)^n-3)) \\ Altug Alkan, Oct 23 2015

Formula

a(n) = 2*(6*n + (-1)^n - 3).
A259748(a(n))/a(n) = 3/4.
a(n) = 4*A007310(n). - Michel Marcus, Sep 22 2015
G.f.: 4*x*(1 + 4*x + x^2) / ((1 + x)*(1 - x)^2). - Bruno Berselli, Oct 23 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/24. - Amiram Eldar, Dec 31 2021
E.g.f.: 2*(2 + (6*x - 3)*exp(x) + exp(-x)). - David Lovler, Sep 05 2022

Extensions

Better name from Danny Rorabaugh, Oct 22 2015

A259749 Numbers that are congruent to {1,2,5,7,10,11,13,17,19,23} mod 24.

Original entry on oeis.org

1, 2, 5, 7, 10, 11, 13, 17, 19, 23, 25, 26, 29, 31, 34, 35, 37, 41, 43, 47, 49, 50, 53, 55, 58, 59, 61, 65, 67, 71, 73, 74, 77, 79, 82, 83, 85, 89, 91, 95, 97, 98, 101, 103, 106, 107, 109, 113, 115, 119, 121, 122, 125, 127, 130, 131, 133, 137, 139, 143, 145
Offset: 1

Views

Author

Keywords

Comments

Original name: Numbers n such that A259748(n) = 0.

Crossrefs

Cf. A000914.
Other sequences of numbers n such that A259748(n)/n equals a constant: A008606, A073762, A259750, A259751, A259752, A259754, A259755.

Programs

  • Mathematica
    A[n_] := A[n] = Sum[a b, {a, 1, n}, {b, a + 1, n}] ; Select[Range[600], Mod[A[#], #]  == 0 & ]
    Rest@ CoefficientList[Series[x (1 + x^2) (1 + 2 x^2 - x^3 + 2 x^4 - 2 x^5 + 3 x^6 + x^7)/((1 - x)^2*(1 - x + x^2 - x^3 + x^4) (1 + x + x^2 + x^3 + x^4)), {x, 0, 61}], x] (* Michael De Vlieger, Aug 25 2016 *)
    Select[Range[150],MemberQ[{1,2,5,7,10,11,13,17,19,23},Mod[#,24]]&] (* or *) LinearRecurrence[{2,-2,2,-2,2,-2,2,-2,2,-1},{1,2,5,7,10,11,13,17,19,23},70] (* Harvey P. Dale, Jan 15 2022 *)
  • PARI
    Vec(x*(1+x^2)*(1+2*x^2-x^3+2*x^4-2*x^5+3*x^6+x^7)/((1-x)^2*(1-x+x^2-x^3+x^4)*(1+x+x^2+x^3+x^4)) + O(x^100)) \\ Colin Barker, Aug 25 2016

Formula

A259748(a(n)) = Sum_{x*y: x,y in Z/a(n)Z, x<>y} = 0.
G.f.: x*(1+x^2)*(1+2*x^2-x^3+2*x^4-2*x^5+3*x^6+x^7) / ((1-x)^2*(1-x+x^2-x^3+x^4)*(1+x+x^2+x^3+x^4)). - Colin Barker, Aug 25 2016

Extensions

Better name from Danny Rorabaugh, Oct 22 2015

A259751 Numbers that are congruent to {8, 16} mod 24.

Original entry on oeis.org

8, 16, 32, 40, 56, 64, 80, 88, 104, 112, 128, 136, 152, 160, 176, 184, 200, 208, 224, 232, 248, 256, 272, 280, 296, 304, 320, 328, 344, 352, 368, 376, 392, 400, 416, 424, 440, 448, 464, 472, 488, 496, 512, 520, 536, 544, 560, 568, 584, 592, 608, 616, 632
Offset: 1

Views

Author

Keywords

Comments

Original name: Numbers n such that n/A259748(n) = 4.

Crossrefs

Other sequences of numbers n such that A259748(n)/n equals a constant: A008606, A073762, A259749, A259750, A259752, A259754, A259755.

Programs

  • Mathematica
    A[n_] := A[n] = Sum[a b, {a, 1,  n}, {b, a + 1, n}] ; Select[Range[600], Mod[A[#], #]/# == 1/4 & ]
  • PARI
    Vec(8*x*(1+x+x^2)/((1-x)^2*(1+x)) + O(x^100)) \\ Colin Barker, Aug 26 2016

Formula

A259748(a(n))/a(n) = 1/4.
a(n) = 8*A001651. - Danny Rorabaugh, Oct 22 2015
From Colin Barker, Aug 26 2016: (Start)
a(n) = 12*n-2*(-1)^n-6.
a(n) = a(n-1)+a(n-2)-a(n-3) for n>3.
G.f.: 8*x*(1+x+x^2) / ((1-x)^2*(1+x)).
(End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/72. - Amiram Eldar, Dec 31 2021
E.g.f.: 2*(4 + (6*x - 3)*exp(x) - exp(-x)). - David Lovler, Sep 05 2022

Extensions

Better name from Danny Rorabaugh, Oct 22 2015

A259752 a(n) = 24*n - 18.

Original entry on oeis.org

6, 30, 54, 78, 102, 126, 150, 174, 198, 222, 246, 270, 294, 318, 342, 366, 390, 414, 438, 462, 486, 510, 534, 558, 582, 606, 630, 654, 678, 702, 726, 750, 774, 798, 822, 846, 870, 894, 918, 942, 966, 990, 1014, 1038, 1062, 1086, 1110, 1134, 1158, 1182, 1206
Offset: 1

Views

Author

Keywords

Comments

Original name: Numbers n such that n/A259748(n) = 6.
Partial sums give A152746. - Leo Tavares, Jul 29 2023

Crossrefs

Other sequences of numbers n such that A259748(n)/n equals a constant: A008606, A073762, A259749, A259750, A259751, A259754, A259755.

Programs

  • Mathematica
    A[n_] := A[n] = Sum[a b, {a, 1,  n}, {b, a + 1, n}] ; Select[Range[600], Mod[A[#], #]/# == 1/6 & ]

Formula

A259748(a(n))/a(n) = 1/6.
a(n) = 6*A016813(n-1). - Michel Marcus, Jul 18 2015
G.f.: 6*x*(3*x+1)/(x-1)^2. - Alois P. Heinz, Jul 29 2023
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 6*(exp(x)*(4*x - 3) + 3).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

Better name from Danny Rorabaugh, Oct 22 2015

A259754 Numbers that are congruent to {3,9,15,18,21} mod 24.

Original entry on oeis.org

3, 9, 15, 18, 21, 27, 33, 39, 42, 45, 51, 57, 63, 66, 69, 75, 81, 87, 90, 93, 99, 105, 111, 114, 117, 123, 129, 135, 138, 141, 147, 153, 159, 162, 165, 171, 177, 183, 186, 189, 195, 201, 207, 210, 213, 219, 225, 231, 234, 237, 243, 249, 255, 258, 261, 267
Offset: 1

Views

Author

Keywords

Comments

Original name: Numbers n such that n/A259748(n) = 3/2.

Crossrefs

Cf. A000914.
Other sequences of numbers n such that A259748(n)/n equals a constant: A008606, A073762, A259749, A259750, A259751, A259752, A259755.

Programs

  • Mathematica
    A[n_] := A[n] = Sum[a b, {a, 1, n}, {b, a + 1, n}]; Select[Range[200], Mod[A[#], #]/# == 2/3 &]
    Rest@ CoefficientList[Series[3 x (1 + x) (1 + x + x^2 + x^4)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4)), {x, 0, 56}], x] (* Michael De Vlieger, Aug 25 2016 *)
    LinearRecurrence[{1,0,0,0,1,-1},{3,9,15,18,21,27},60] (* Harvey P. Dale, Aug 30 2016 *)
  • PARI
    Vec(3*x*(1+x)*(1+x+x^2+x^4)/((1-x)^2*(1+x+x^2+x^3+x^4)) + O(x^100)) \\ Colin Barker, Aug 25 2016

Formula

A259748(a(n))/a(n) = 2/3.
a(n) = 3*A047584(n). - Michel Marcus, Jul 18 2015
From Colin Barker, Aug 25 2016: (Start)
a(n) = a(n-1)+a(n-5)-a(n-6) for n>6.
G.f.: 3*x*(1+x)*(1+x+x^2+x^4) / ((1-x)^2*(1+x+x^2+x^3+x^4)).
(End)

Extensions

Better name from Danny Rorabaugh, Oct 22 2015
Showing 1-8 of 8 results.