cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A008594 Multiples of 12.

Original entry on oeis.org

0, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 360, 372, 384, 396, 408, 420, 432, 444, 456, 468, 480, 492, 504, 516, 528, 540, 552, 564, 576, 588, 600, 612, 624, 636
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 36 ).
The positive terms are the differences of consecutive star numbers (A003154). - Mihir Mathur, Jun 07 2013
A089911(a(n)) = 0. - Reinhard Zumkeller, Jul 05 2013
a(1) = 12 is a primitive abundant number, thus all a(n), n >= 2, are nonprimitive abundant numbers. - Daniel Forgues, Sep 24 2016

Crossrefs

Programs

Formula

From Vincenzo Librandi, Jun 11 2011: (Start)
a(n) = 12*n.
a(n) = 2*a(n-1) - a(n-2) for n > 1.
G.f.: 12*x/(1-x)^2. (End)
a(n) = A003154(n) - A003154(n-1). - Mihir Mathur, Jun 07 2013
From Elmo R. Oliveira, Apr 10 2025: (Start)
E.g.f.: 12*x*exp(x).
a(n) = 2*A008588(n) = A008606(n)/2. (End)

A183010 a(n) = 24*n - 1.

Original entry on oeis.org

-1, 23, 47, 71, 95, 119, 143, 167, 191, 215, 239, 263, 287, 311, 335, 359, 383, 407, 431, 455, 479, 503, 527, 551, 575, 599, 623, 647, 671, 695, 719, 743, 767, 791, 815, 839, 863, 887, 911, 935, 959, 983, 1007, 1031, 1055, 1079, 1103, 1127, 1151, 1175, 1199
Offset: 0

Views

Author

Omar E. Pol, Jan 21 2011

Keywords

Comments

a(n) is also the denominator of the finite algebraic formula for the number of partitions of n, if n >= 1. The formula is p(n) = Tr(n)/(24*n - 1), n >= 1. See theorem 1.1 of the Bruinier-Ono paper in the link. For the numerators see A183011.
It appears that a(n) is also the denominator of the coefficient of the third term in the n-th Bruinier-Ono "partition polynomial" H_n(x). See the Bruinier-Ono paper, chapter 5 "Examples". For the numerators see A183007. - Omar E. Pol, Jul 13 2011
Also exponents in the formula q^(-1) + q^23 + 2*q^47 + 3*q^71 + 5*q^95 + 7*q^119 + 11*q^143 + 15*q^167 + ... in which the coefficients are the partition numbers (see A000041, Example section). - Omar E. Pol, Feb 27 2013

Examples

			G.f. = -1 + 23*x + 47*x^2 + 71*x^3 + 95*x^4 + 119*x^5 + 143*x^6 + 167*x^7 + ...
		

Crossrefs

Cf. A000041, A000203, A008606, A134517 (subset of primes), A183009, A183011, A187206, A280097 (sum of divisors), A280098.
Cf. A008594.

Programs

Formula

a(n) = A008606(n) - 1.
a(1)=23, a(2)=47, a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 23 2011
a(n) = A183011(n)/A000041(n). - Omar E. Pol, Jul 14 2011
24 * A280098(n) = A000203(a(n)) if n>0. - Michael Somos, Dec 25 2016
E.g.f.: (24*x-1)*exp(x). - G. C. Greubel, Aug 14 2018
G.f.: (-1 + 25*x)/(1-x)^2. - Wolfdieter Lang, Dec 10 2021
a(n) = 2*A008594(n) - 1. - Leo Tavares, Jun 06 2023

A183011 (24n - 1)p(n): traces of partition class polynomials, with a(0) = -1.

Original entry on oeis.org

-1, 23, 94, 213, 475, 833, 1573, 2505, 4202, 6450, 10038, 14728, 22099, 31411, 45225, 63184, 88473, 120879, 165935, 222950, 300333, 398376, 528054, 691505, 905625, 1172842, 1517628, 1947470, 2494778, 3172675, 4029276, 5083606, 6403683, 8023113
Offset: 0

Views

Author

Omar E. Pol, Jan 21 2011

Keywords

Comments

a(n) is also Tr(n), the numerator of the finite algebraic formula for the number of partitions of n, if n >= 1. The formula is p(n) = Tr(n)/(24*n - 1), n >= 1. See theorem 1.1 of the Bruinier-Ono paper in the link. For the denominators see A183010.
a(n) is also the coefficient of the second term (the trace) in the n-th Bruinier-Ono "partition polynomial" H_n(x), if n >= 1. See the Bruinier-Ono paper, theorem 1.1 and chapter 5 "Examples". For the coefficients of the 4th terms see A187218. - Omar E. Pol, Jul 10 2011
In the Bruinier-Ono-Sutherland paper (Jan 23 2013) partition polynomials are called "partition class polynomials". See also Sutherland's table of Hpart_n(x) in link section. - Omar E. Pol, Feb 20 2013

Examples

			1. For n = 6, the number of partitions of 6 is 11, so a(6) = (24*6 - 1)*11 = 143*11 = 1573.
2. For n = 1, in the Bruinier-Ono paper, chapter 5, the first "partition polynomial" is H_1(x) = x^3 - 23*x^2 + (3592/23)*x - 419. The coefficient of the second term (the trace) is 23, so a(1) = 23.
G.f. = -1 + 23*x + 94*x^2 + 213*x^3 + 475*x^4 + 833*x^5 + 1573*x^6 + 2505*x^7 + ...
G.f. = -q^-1 + 23*q^23 + 94*q^47 + 213*q^71 + 475*q^95 + 833*q^119 + 1573*q^143 + ...
		

Crossrefs

Positive terms are the partial sums of A183012, also the column 24 of A182729.

Programs

  • Mathematica
    a[ n_] := (24 n - 1) SeriesCoefficient[ 1 / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Jun 26 2017 *)
  • PARI
    {a(n) = if( n<0, 0, (24*n - 1) * numbpart(n))}; /* Michael Somos, Aug 28 2013 */

Formula

a(n) = A183010(n)*A000041(n).
a(n) = 24*A066186(n) - A000041(n) = A183009(n) - A000041(n) = (A008606(n)-1)*A000041(n).
a(n) = 12M_2(n) - p(n) = 24spt(n) + 12N_2(n) - p(n) = 12*A220909(n) - A000041(n) = 24*A092269(n) + 12*A220908(n) - A000041(n), n >= 1. - Omar E. Pol, Feb 17 2013
G.f.: Sum_{k >= 0} a(k) * q^(24*k - 1) = q * d/dq (1/q * Product_{k > 0} 1 / (1 - q^(24*k))). - Michael Somos, Aug 28 2013

A008607 Multiples of 25.

Original entry on oeis.org

0, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, 1000, 1025, 1050, 1075, 1100, 1125, 1150, 1175, 1200, 1225
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: 25*x/(1-x)^2. - Colin Barker, Feb 19 2012
From Wesley Ivan Hurt, May 19 2024: (Start)
a(n) = 25*n.
a(n) = 2*a(n-1) - a(n-2). (End)
E.g.f.: 25*x*exp(x). - Stefano Spezia, Oct 18 2024

A259748 a(n) = (Sum_{0

Original entry on oeis.org

0, 0, 2, 3, 0, 1, 0, 2, 6, 0, 0, 5, 0, 7, 10, 4, 0, 12, 0, 15, 14, 11, 0, 22, 0, 0, 18, 21, 0, 5, 0, 8, 22, 0, 0, 15, 0, 19, 26, 10, 0, 28, 0, 33, 30, 23, 0, 44, 0, 0, 34, 39, 0, 9, 0, 14, 38, 0, 0, 25, 0, 31, 42, 16, 0, 44, 0, 51, 46, 35, 0, 66, 0, 0, 50
Offset: 1

Views

Author

Keywords

Comments

{a(n)/n: n=1,2,...} = {0, 1/6, 1/4, 5/12, 1/2, 2/3, 3/4, 11/12}.
From Danny Rorabaugh, Oct 22 2015: (Start)
a(n)/n = 0 iff n mod 24 = 1,2,5,7,10,11,13,17,19,23 (A259749);
a(n)/n = 1/6 iff n mod 24 = 6 (A259752);
a(n)/n = 1/4 iff n mod 24 = 8,16 (A259751);
a(n)/n = 5/12 iff n mod 24 = 12 (A073762);
a(n)/n = 1/2 iff n mod 24 = 14,22 (A259750);
a(n)/n = 2/3 iff n mod 24 = 3,9,15,18,21 (A259754);
a(n)/n = 3/4 iff n mod 24 = 4,20 (A259755);
a(n)/n = 11/12 iff n mod 24 = 0 (A008606).
(End)

Crossrefs

Cf. A000914,
A259749 (n such that a(n)=0),
A259750 (n such that n/a(n)=2),
A259751 (n such that n/a(n)=4),
A259752 (n such that n/a(n)=6),
A073762 (n such that n/a(n)=12/5),
A259754 (n such that n/a(n)=3/2),
A259755 (n such that n/a(n)=4/3),
A008606 (n such that n/a(n)=12/11).

Programs

  • Mathematica
    A[n_]:=Sum[a b,{a,1,n},{b,a+1,n}];Table[Mod[A[n],n],{n,1,122}]
  • PARI
    vector(100, n, ((n-1)*n*(n+1)*(3*n+2)/24) % n) \\ Altug Alkan, Oct 22 2015

Formula

a(n) = A000914(n) mod n = (1/24)*(-1 + n)*n*(1 + n)*(2 + 3*n) mod n.
a(24k) = 22k; a(24k+1) = 0; a(24k+2) = 0; a(24k+3) = 16k+2; a(24k+4) = 18k+3; a(24k+5) = 0; a(24k+6) = 4k+1, a(24k+7) = 0; a(24k+8) = 6k+2; a(24k+9) = 16k+6; a(24k+10) = 0; a(24k+11) = 0; a(24k+12) = 10k+5; a(24k+13) = 0; a(24k+14) = 12k+7; a(24k+15) = 16k+10; a(24k+16) = 6k+4; a(24k+17) = 0; a(24k+18) = 16k+12; a(24k+19) = 0; a(24k+20) = 18k+15; a(24k+21) = 16k+14; a(24k+22) = 12k+11; a(24k+23) = 0. - Danny Rorabaugh, Oct 22 2015

A259755 Numbers that are congruent to {4, 20} mod 24.

Original entry on oeis.org

4, 20, 28, 44, 52, 68, 76, 92, 100, 116, 124, 140, 148, 164, 172, 188, 196, 212, 220, 236, 244, 260, 268, 284, 292, 308, 316, 332, 340, 356, 364, 380, 388, 404, 412, 428, 436, 452, 460, 476, 484, 500, 508, 524, 532, 548, 556, 572, 580, 596, 604, 620, 628
Offset: 1

Views

Author

Keywords

Crossrefs

Other sequences of numbers k such that A259748(k)/k equals a constant: A008606, A073762, A259749, A259750, A259751, A259752, A259754.

Programs

  • Magma
    [2*(6*n+(-1)^n-3): n in [1..60]]; // Vincenzo Librandi, Aug 27 2015
    
  • Mathematica
    A[n_] := A[n] = Sum[a b, {a, 1,n}, {b, a + 1, n}]; Select[Range[200], Mod[A[#], #]/# == 3/4 &]
    Table[2 (6 n + (-1)^n - 3), {n, 1, 60}] (* Bruno Berselli, Oct 23 2015 *)
    LinearRecurrence[{1,1,-1},{4,20,28},60] (* Harvey P. Dale, Jul 19 2016 *)
  • PARI
    vector(100, n, 2*(6*n+(-1)^n-3)) \\ Altug Alkan, Oct 23 2015

Formula

a(n) = 2*(6*n + (-1)^n - 3).
A259748(a(n))/a(n) = 3/4.
a(n) = 4*A007310(n). - Michel Marcus, Sep 22 2015
G.f.: 4*x*(1 + 4*x + x^2) / ((1 + x)*(1 - x)^2). - Bruno Berselli, Oct 23 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/24. - Amiram Eldar, Dec 31 2021
E.g.f.: 2*(2 + (6*x - 3)*exp(x) + exp(-x)). - David Lovler, Sep 05 2022

Extensions

Better name from Danny Rorabaugh, Oct 22 2015

A008605 Multiples of 23.

Original entry on oeis.org

0, 23, 46, 69, 92, 115, 138, 161, 184, 207, 230, 253, 276, 299, 322, 345, 368, 391, 414, 437, 460, 483, 506, 529, 552, 575, 598, 621, 644, 667, 690, 713, 736, 759, 782, 805, 828, 851, 874, 897, 920, 943, 966, 989, 1012, 1035, 1058, 1081, 1104, 1127, 1150
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: 23*x/(x-1)^2. - Vincenzo Librandi, Jun 10 2013
E.g.f.: 23*x*exp(x). - Stefano Spezia, Mar 02 2025
From Elmo R. Oliveira, Apr 10 2025: (Start)
a(n) = 23*n = (A008604(n) + A008606(n))/2.
a(n) = 2*a(n-1) - a(n-2). (End)

A103214 a(n) = 24*n + 1.

Original entry on oeis.org

1, 25, 49, 73, 97, 121, 145, 169, 193, 217, 241, 265, 289, 313, 337, 361, 385, 409, 433, 457, 481, 505, 529, 553, 577, 601, 625, 649, 673, 697, 721, 745, 769, 793, 817, 841, 865, 889, 913, 937, 961, 985, 1009, 1033, 1057, 1081, 1105, 1129, 1153, 1177, 1201
Offset: 0

Views

Author

Ralf Stephan, Jan 28 2005

Keywords

Crossrefs

Equals A008606 + 1. Bisection of A017533.
Cf. A255185.

Programs

Formula

From Elmo R. Oliveira, Mar 21 2024: (Start)
G.f.: (1+23*x)/(1-x)^2.
E.g.f.: exp(x)*(1 + 24*x).
a(n) = A255185(n+1) - A255185(n).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)

A183009 a(n) = 24*n*p(n) = 24*n*A000041(n).

Original entry on oeis.org

24, 96, 216, 480, 840, 1584, 2520, 4224, 6480, 10080, 14784, 22176, 31512, 45360, 63360, 88704, 121176, 166320, 223440, 300960, 399168, 529056, 692760, 907200, 1174800, 1520064, 1950480, 2498496, 3177240, 4034880, 5090448, 6412032
Offset: 1

Views

Author

Omar E. Pol, Jan 22 2011

Keywords

Comments

a(n) is also the sum of the partition number of n and the "trace" Tr(n) of A183011. a(n) = p(n) + Tr(n).
a(n) is also the number of "sectors" or "half-periods" in all partitions of n in some versions of the shell model of partitions of A135010.

Examples

			The number of partitions of 6 is p(6) = A000041(6) = 11, so a(6) = 24*6*11 = 1584.
Also the trace Tr(6) = A183011(6) = 1573, so a(6) = p(6) + Tr(6) = 11 + 1573 = 1584.
		

Crossrefs

Programs

  • Mathematica
    Table[24n*PartitionsP[n],{n,40}] (* Harvey P. Dale, Mar 07 2019 *)

Formula

a(n) = A008606(n)*A000041(n) = 24*A066186(n) = n*A183008(n).
a(n) = p(n) + Tr(n) = A000041(n) + A183011(n).
a(n) = 12*M_2(n) = 24*spt(n) + 12*N_2(n) = 12*A220909(n) = 24*A092269(n) + 12*A220908(n). - Omar E. Pol, Feb 17 2013

A195824 a(n) = 24*n^2.

Original entry on oeis.org

0, 24, 96, 216, 384, 600, 864, 1176, 1536, 1944, 2400, 2904, 3456, 4056, 4704, 5400, 6144, 6936, 7776, 8664, 9600, 10584, 11616, 12696, 13824, 15000, 16224, 17496, 18816, 20184, 21600, 23064, 24576, 26136, 27744, 29400, 31104, 32856, 34656, 36504, 38400, 40344
Offset: 0

Views

Author

Omar E. Pol, Sep 28 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 24, ..., in the square spiral whose vertices are the generalized tetradecagonal numbers A195818.
Surface area of a cube with side 2n. - Wesley Ivan Hurt, Aug 05 2014

Crossrefs

Programs

  • Magma
    [24*n^2 : n in [0..50]]; // Wesley Ivan Hurt, Aug 05 2014
    
  • Magma
    I:=[0,24,96]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 06 2014
  • Maple
    A195824:=n->24*n^2: seq(A195824(n), n=0..50); # Wesley Ivan Hurt, Aug 05 2014
  • Mathematica
    24 Range[0, 30]^2 (* or *) Table[24 n^2, {n, 0, 30}] (* or *) CoefficientList[Series[24 x (1 + x)/(1 - x)^3, {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 05 2014 *)
    LinearRecurrence[{3,-3,1},{0,24,96},40] (* Harvey P. Dale, Nov 11 2017 *)
  • PARI
    a(n) = 24*n^2; \\ Michel Marcus, Aug 05 2014
    

Formula

a(n) = 24*A000290(n) = 12*A001105(n) = 8*A033428(n) = 6*A016742(n) = 4*A033581(n) = 3*A139098(n) = 2*A135453(n).
From Wesley Ivan Hurt, Aug 05 2014: (Start)
G.f.: 24*x*(1+x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 24*x*(1 + x)*exp(x).
a(n) = n*A008606(n) = A195158(2*n). (End)
Showing 1-10 of 31 results. Next