A183010
a(n) = 24*n - 1.
Original entry on oeis.org
-1, 23, 47, 71, 95, 119, 143, 167, 191, 215, 239, 263, 287, 311, 335, 359, 383, 407, 431, 455, 479, 503, 527, 551, 575, 599, 623, 647, 671, 695, 719, 743, 767, 791, 815, 839, 863, 887, 911, 935, 959, 983, 1007, 1031, 1055, 1079, 1103, 1127, 1151, 1175, 1199
Offset: 0
G.f. = -1 + 23*x + 47*x^2 + 71*x^3 + 95*x^4 + 119*x^5 + 143*x^6 + 167*x^7 + ...
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- J. H. Bruinier and K. Ono, Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms
- A. Dabholkar, S. Murthy, and D. Zagier, Quantum Black Holes, Wall Crossing, and Mock Modular Forms, arXiv:1208.4074 [hep-th], 2012-2014, see p. 46.
- H. Gupta, Congruent properties of sigma(n), Math. Student 13 (1945) 25-29.
- E. Larson and L. Rolen, Integrality properties of the CM-values of certain weak Maass forms, arXiv:1107.4114 [math.NT], 2011.
- K. Ono, Congruences for the Andrews spt-function, (see 2.1 Producing modular forms)
- W. Sierpinski, Elementary Theory of numbers, Monografie Mathematyczne, vol. 42 (1964) chapt 4, p. 168.
- Leo Tavares, Illustration: Star Pairs
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
A183011
(24n - 1)p(n): traces of partition class polynomials, with a(0) = -1.
Original entry on oeis.org
-1, 23, 94, 213, 475, 833, 1573, 2505, 4202, 6450, 10038, 14728, 22099, 31411, 45225, 63184, 88473, 120879, 165935, 222950, 300333, 398376, 528054, 691505, 905625, 1172842, 1517628, 1947470, 2494778, 3172675, 4029276, 5083606, 6403683, 8023113
Offset: 0
1. For n = 6, the number of partitions of 6 is 11, so a(6) = (24*6 - 1)*11 = 143*11 = 1573.
2. For n = 1, in the Bruinier-Ono paper, chapter 5, the first "partition polynomial" is H_1(x) = x^3 - 23*x^2 + (3592/23)*x - 419. The coefficient of the second term (the trace) is 23, so a(1) = 23.
G.f. = -1 + 23*x + 94*x^2 + 213*x^3 + 475*x^4 + 833*x^5 + 1573*x^6 + 2505*x^7 + ...
G.f. = -q^-1 + 23*q^23 + 94*q^47 + 213*q^71 + 475*q^95 + 833*q^119 + 1573*q^143 + ...
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- K. Bringmann and K. Ono, An arithmetic formula for the partition function, Proc Am. Math. Soc. 135 (2007), 3507-3515
- K. Bringmann and K. Ono, Lifting elliptic cusp forms to Maass forms with an application to partitions, Proc Nat. Acad. Sci. 104 (10) (2007) 3725-3731
- J. H. Bruinier and K. Ono, Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms
- J. H. Bruinier, K. Ono, A. V. Sutherland, Class polynomials for nonholomorphic modular functions, arXiv:1301.5672 [math.NT], 2013-2015.
- A. Dabholkar, S. Murthy, D. Zagier, Quantum Black Holes, Wall Crossing, and Mock Modular Forms, arXiv:1208.4074 [hep-th], 2012-2014, p. 46.
- A. Folsom, Z. A. Kent and K. Ono, l-adic properties of the partition function, preprint.
- A. Folsom, Z. A. Kent and K. Ono, l-adic properties of the partition function, Advances in Mathematics, 229 (2012), pages 1586-1609.
- F. G. Garvan, Congruences for Andrews' spt-function modulo 32760 and extension of Atkin's Hecke-type partition congruences, arXiv:1011.1957 [math.NT], 2010; see (1.5), (2.10).
- P. M. Jenkins, Traces of singular moduli, modular forms, and Maass forms
- E. Larson and L. Rolen, Integrality properties of the CM-values of certain weak Maass forms, arXiv:1107.4114 [math.NT], 2011.
- K. Ono, Congruences for the Andrews spt-function, (see 2.1 Producing modular forms)
- A. V. Sutherland, Partition class polynomials, Hpart_n(x), n = 1..770
Positive terms are the partial sums of
A183012, also the column 24 of
A182729.
-
a[ n_] := (24 n - 1) SeriesCoefficient[ 1 / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Jun 26 2017 *)
-
{a(n) = if( n<0, 0, (24*n - 1) * numbpart(n))}; /* Michael Somos, Aug 28 2013 */
A182728
Array T(n,k) = n*k*A000041(n) read by antidiagonals, n,k >= 1.
Original entry on oeis.org
1, 4, 2, 9, 8, 3, 20, 18, 12, 4, 35, 40, 27, 16, 5, 66, 70, 60, 36, 20, 6, 105, 132, 105, 80, 45, 24, 7, 176, 210, 198, 140, 100, 54, 28, 8, 270, 352, 315, 264, 175, 120, 63, 32, 9, 420, 540, 528, 420, 330, 210, 140, 72, 36, 10, 616, 840, 810, 704, 525, 396, 245, 160, 81, 40, 11
Offset: 1
Array begins:
1, 2, 3, 4, 5, 6, 7, ...
4, 8, 12, 16, 20, 24, 28, ...
9, 18, 27, 36, 45, 54, 63, ...
20, 40, 60, 80, 100, 120, 140, ...
35, 70, 105, 140, 175, 210, 245, ...
66, 132, 198, 264, 330, 396, 462, ...
105, 210, 315, 420, 525, 630, 735, ...
-
A182728 := proc(n,k) n*k*combinat[numbpart](n) ; end proc:
seq(seq( A182728(d+1-k, k), k=1..d), d=1..10) ; # R. J. Mathar, Feb 01 2011
A182729
Square array T(n,k) = (n*k-1)*A000041(n) read by antidiagonals upwards.
Original entry on oeis.org
0, 2, 1, 6, 6, 2, 15, 15, 10, 3, 28, 35, 24, 14, 4, 55, 63, 55, 33, 18, 5, 90, 121, 98, 75, 42, 22, 6, 154, 195, 187, 133, 95, 51, 26, 7, 240, 330, 300, 253, 168, 115, 60, 30, 8, 378, 510, 506, 405, 319, 203, 135, 69, 34, 9
Offset: 1
Square array T(n,k) begins:
0, 1, 2, 3, 4, 5, ...
2, 6, 10, 14, 18, 22, ...
6, 15, 24, 33, 42, 51, ...
15, 35, 55, 75, 95, 115, ...
28, 63, 98, 133, 168, 203, ...
55, 121, 187, 253, 319, 385, ...
-
T:= (n,k)-> (n*k-1)*combinat[numbpart](n):
seq (seq (T(d-k, k), k=1..d-1), d=2..11);
-
Table[With[{n = m - k + 1}, (n k - 1) PartitionsP[n]], {m, 10}, {k, m}] // Flatten (* Michael De Vlieger, Nov 02 2017 *)
A187206
a(n) = 6*(24*n - 1).
Original entry on oeis.org
138, 282, 426, 570, 714, 858, 1002, 1146, 1290, 1434, 1578, 1722, 1866, 2010, 2154, 2298, 2442, 2586, 2730, 2874, 3018, 3162, 3306, 3450, 3594, 3738, 3882, 4026, 4170, 4314, 4458, 4602, 4746, 4890, 5034, 5178, 5322, 5466, 5610, 5754, 5898, 6042, 6186, 6330, 6474, 6618
Offset: 1
Original entry on oeis.org
24, 72, 120, 264, 360, 744, 936, 1704, 2256, 3600, 4704, 7392
Offset: 1
Showing 1-6 of 6 results.
Comments