A183009
a(n) = 24*n*p(n) = 24*n*A000041(n).
Original entry on oeis.org
24, 96, 216, 480, 840, 1584, 2520, 4224, 6480, 10080, 14784, 22176, 31512, 45360, 63360, 88704, 121176, 166320, 223440, 300960, 399168, 529056, 692760, 907200, 1174800, 1520064, 1950480, 2498496, 3177240, 4034880, 5090448, 6412032
Offset: 1
The number of partitions of 6 is p(6) = A000041(6) = 11, so a(6) = 24*6*11 = 1584.
Also the trace Tr(6) = A183011(6) = 1573, so a(6) = p(6) + Tr(6) = 11 + 1573 = 1584.
Cf.
A000041,
A000796,
A008606,
A018253,
A066186,
A135010,
A182742,
A182743,
A183008,
A183010,
A183011.
A182727
Sum of largest parts of the shell model of partitions with n regions.
Original entry on oeis.org
1, 3, 6, 8, 12, 15, 20, 22, 26, 29, 35, 38, 43, 47, 54, 56, 60, 63, 69, 74, 78, 86, 89, 94, 98, 105, 108, 114, 119, 128, 130, 134, 137, 143, 148, 152, 160, 164, 171, 177, 182, 192, 195, 200, 204, 211, 214, 220, 225, 234, 239, 243, 251, 258, 264, 275, 277, 281
Offset: 1
For n = 6 the largest parts of the first six regions of the shell model of partitions are 1, 2, 3, 2, 4, 3, so a(6) = 1+2+3+2+4+3 = 15.
Written as a triangle begins:
1;
3;
6;
8, 12;
15, 20;
22, 26, 29, 35;
38, 43, 47, 54;
56, 60, 63, 69, 74, 78, 86;
89, 94, 98,105,108,114,119,128;
130,134,137,143,148,152,160,164,171,177,182,192;
195,200,204,211,214,220,225,234,239,243,251,258,264,275;
A182729
Square array T(n,k) = (n*k-1)*A000041(n) read by antidiagonals upwards.
Original entry on oeis.org
0, 2, 1, 6, 6, 2, 15, 15, 10, 3, 28, 35, 24, 14, 4, 55, 63, 55, 33, 18, 5, 90, 121, 98, 75, 42, 22, 6, 154, 195, 187, 133, 95, 51, 26, 7, 240, 330, 300, 253, 168, 115, 60, 30, 8, 378, 510, 506, 405, 319, 203, 135, 69, 34, 9
Offset: 1
Square array T(n,k) begins:
0, 1, 2, 3, 4, 5, ...
2, 6, 10, 14, 18, 22, ...
6, 15, 24, 33, 42, 51, ...
15, 35, 55, 75, 95, 115, ...
28, 63, 98, 133, 168, 203, ...
55, 121, 187, 253, 319, 385, ...
-
T:= (n,k)-> (n*k-1)*combinat[numbpart](n):
seq (seq (T(d-k, k), k=1..d-1), d=2..11);
-
Table[With[{n = m - k + 1}, (n k - 1) PartitionsP[n]], {m, 10}, {k, m}] // Flatten (* Michael De Vlieger, Nov 02 2017 *)
Showing 1-3 of 3 results.
Comments