cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A195040 Square array read by antidiagonals with T(n,k) = k*n^2/4+(k-4)*((-1)^n-1)/8, n>=0, k>=0.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 3, 2, 1, 0, 1, 4, 5, 3, 1, 0, 0, 7, 8, 7, 4, 1, 0, 1, 9, 13, 12, 9, 5, 1, 0, 0, 13, 18, 19, 16, 11, 6, 1, 0, 1, 16, 25, 27, 25, 20, 13, 7, 1, 0, 0, 21, 32, 37, 36, 31, 24, 15, 8, 1, 0, 1, 25, 41, 48, 49, 45, 37, 28, 17, 9, 1, 0
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also, if k >= 2 and m = 2*k, then column k lists the numbers of the form k*n^2 and the centered m-gonal numbers interleaved.
For k >= 3, this is also a table of concentric polygonal numbers. Column k lists the concentric k-gonal numbers.
It appears that the first differences of column k are the numbers that are congruent to {1, k-1} mod k, if k >= 3.

Examples

			Array begins:
  0,   0,   0,   0,   0,   0,   0,   0,   0,   0, ...
  1,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...
  0,   1,   2,   3,   4,   5,   6,   7,   8,   9, ...
  1,   3,   5,   7,   9,  11,  13,  15,  17,  19, ...
  0,   4,   8,  12,  16,  20,  24,  28,  32,  36, ...
  1,   7,  13,  19,  25,  31,  37,  43,  49,  55, ...
  0,   9,  18,  27,  36,  45,  54,  63,  72,  81, ...
  1,  13,  25,  37,  49,  61,  73,  85,  97, 109, ...
  0,  16,  32,  48,  64,  80,  96, 112, 128, 144, ...
  1,  21,  41,  61,  81, 101, 121, 141, 161, 181, ...
  0,  25,  50,  75, 100, 125, 150, 175, 200, 225, ...
  ...
		

Crossrefs

Rows n: A000004 (n=0), A000012 (n=1), A001477 (n=2), A005408 (n=3), A008586 (n=4), A016921 (n=5), A008591 (n=6), A017533 (n=7), A008598 (n=8), A215145 (n=9), A008607 (n=10).
Columns k: A000035 (k=0), A004652 (k=1), A000982 (k=2), A077043 (k=3), A000290 (k=4), A032527 (k=5), A032528 (k=6), A195041 (k=7), A077221 (k=8), A195042 (k=9), A195142 (k=10), A195043 (k=11), A195143 (k=12), A195045 (k=13), A195145 (k=14), A195046 (k=15), A195146 (k=16), A195047 (k=17), A195147 (k=18), A195048 (k=19), A195148 (k=20), A195049 (k=21), A195149 (k=22), A195058 (k=23), A195158 (k=24).

Programs

  • GAP
    nmax:=13;; T:=List([0..nmax],n->List([0..nmax],k->k*n^2/4+(k-4)*((-1)^n-1)/8));; b:=List([2..nmax],n->OrderedPartitions(n,2));;
    a:=Flat(List([1..Length(b)],i->List([1..Length(b[i])],j->T[b[i][j][2]][b[i][j][1]]))); # Muniru A Asiru, Jul 19 2018
  • Maple
    A195040 := proc(n,k)
            k*n^2/4+((-1)^n-1)*(k-4)/8 ;
    end proc:
    for d from 0 to 12 do
            for k from 0 to d do
                    printf("%d,",A195040(d-k,k)) ;
            end do:
    end do; # R. J. Mathar, Sep 28 2011
  • Mathematica
    t[n_, k_] := k*n^2/4+(k-4)*((-1)^n-1)/8; Flatten[ Table[ t[n-k, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, Dec 14 2011 *)

A016850 a(n) = (5*n)^2.

Original entry on oeis.org

0, 25, 100, 225, 400, 625, 900, 1225, 1600, 2025, 2500, 3025, 3600, 4225, 4900, 5625, 6400, 7225, 8100, 9025, 10000, 11025, 12100, 13225, 14400, 15625, 16900, 18225, 19600, 21025, 22500, 24025, 25600, 27225, 28900, 30625, 32400, 34225, 36100, 38025, 40000, 42025
Offset: 0

Views

Author

Keywords

Comments

If we define C(n) = (5*n)^2 (n > 0), the sequence is the first "square-sequence" such that for every n there exists p such that C(n) = C(p) + C(p+n). We observe in fact that p = 3*n because 25 = 3^2 + 4^2. The sequence without 0 is linked with the first nontrivial solution (trivial: n^2 = 0^2 + n^2) of the equation X^2 = 2*Y^2 + 2*n^2 where X = 2*k and Y = 2*p + n which is equivalent to k^2 = p^2 + (p+n)^2 for n given. The second such "square-sequence" is (29*n)^2 (n > 0) because 29^2 = 20^2 + 21^2 and with this relation we obtain (29*n)^2 = (20*n)^2 + (20*n+n)^2. - Richard Choulet, Dec 23 2007

Crossrefs

Cf. A000290, A033429, A053742 (first differences), A008587, A008607.
Similar sequences listed in A244630.

Programs

Formula

a(n) = 25*n^2 = 25*A000290(n) = 5*A033429(n). - Omar E. Pol, Jul 03 2014
From Amiram Eldar, Jan 25 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/150.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/300.
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/5)/(Pi/5).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/5)/(Pi/5) = 5*sqrt((5-sqrt(5))/2)/(2*Pi). (End)
a(n) = Sum_{i=0..n-1} A053742(i). - John Elias, Jun 30 2021
G.f.: 25*x*(1 + x)/(1 - x)^3. - Stefano Spezia, Jul 08 2023
From Elmo R. Oliveira, Nov 30 2024: (Start)
E.g.f.: 25*x*(1 + x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = n*A008607(n) = A000290(A008587(n)) = A008587(n)^2. (End)

A262221 a(n) = 25*n*(n + 1)/2 + 1.

Original entry on oeis.org

1, 26, 76, 151, 251, 376, 526, 701, 901, 1126, 1376, 1651, 1951, 2276, 2626, 3001, 3401, 3826, 4276, 4751, 5251, 5776, 6326, 6901, 7501, 8126, 8776, 9451, 10151, 10876, 11626, 12401, 13201, 14026, 14876, 15751, 16651, 17576, 18526, 19501, 20501, 21526, 22576, 23651
Offset: 0

Views

Author

Bruno Berselli, Sep 15 2015

Keywords

Comments

Also centered 25-gonal (or icosipentagonal) numbers.
This is the case k=25 of the formula (k*n*(n+1) - (-1)^k + 1)/2. See table in Links section for similar sequences.
For k=2*n, the formula shown above gives A011379.
Primes in sequence: 151, 251, 701, 1951, 3001, 4751, 10151, 12401, ...

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 51 (23rd row of the table).

Crossrefs

Cf. centered polygonal numbers listed in A069190.
Similar sequences of the form (k*n*(n+1) - (-1)^k + 1)/2 with -1 <= k <= 26: A000004, A000124, A002378, A005448, A005891, A028896, A033996, A035008, A046092, A049598, A060544, A064200, A069099, A069125, A069126, A069128, A069130, A069132, A069174, A069178, A080956, A124080, A163756, A163758, A163761, A164136, A173307.

Programs

  • Magma
    [25*n*(n+1)/2+1: n in [0..50]];
  • Mathematica
    Table[25 n (n + 1)/2 + 1, {n, 0, 50}]
    25*Accumulate[Range[0,50]]+1 (* or *) LinearRecurrence[{3,-3,1},{1,26,76},50] (* Harvey P. Dale, Jan 29 2023 *)
  • PARI
    vector(50, n, n--; 25*n*(n+1)/2+1)
    
  • Sage
    [25*n*(n+1)/2+1 for n in (0..50)]
    

Formula

G.f.: (1 + 23*x + x^2)/(1 - x)^3.
a(n) = a(-n-1) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A123296(n) + 1.
a(n) = A000217(5*n+2) - 2.
a(n) = A034856(5*n+1).
a(n) = A186349(10*n+1).
a(n) = A054254(5*n+2) with n>0, a(0)=1.
a(n) = A000217(n+1) + 23*A000217(n) + A000217(n-1) with A000217(-1)=0.
Sum_{i>=0} 1/a(i) = 1.078209111... = 2*Pi*tan(Pi*sqrt(17)/10)/(5*sqrt(17)).
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=0} a(n)/n! = 77*e/2.
Sum_{n>=0} (-1)^(n+1) * a(n)/n! = 23/(2*e). (End)
E.g.f.: exp(x)*(2 + 50*x + 25*x^2)/2. - Elmo R. Oliveira, Dec 24 2024

A252994 Multiples of 26.

Original entry on oeis.org

0, 26, 52, 78, 104, 130, 156, 182, 208, 234, 260, 286, 312, 338, 364, 390, 416, 442, 468, 494, 520, 546, 572, 598, 624, 650, 676, 702, 728, 754, 780, 806, 832, 858, 884, 910, 936, 962, 988, 1014, 1040, 1066, 1092, 1118, 1144, 1170, 1196, 1222, 1248, 1274, 1300, 1326, 1352, 1378
Offset: 0

Views

Author

Alonso del Arte, Dec 25 2014

Keywords

References

  • Richard A. Mollin, Codes: The Guide to Secrecy From Ancient to Modern Times. Chapman and Hall/CRC (2005): 12.
  • Anne L. Young, Mathematical Ciphers: From Caesar to RSA. American Mathematical Society (2006): 23.

Crossrefs

Programs

  • Mathematica
    26 Range[0, 51]
  • PARI
    a(n)=26*n \\ Georg Fischer, Feb 25 2019

Formula

a(n) = 26*n.
a(n) = 2*a(n-1) - a(n-2).
G.f.: 26*x/(1-x)^2. - Georg Fischer, Feb 25 2019
From Elmo R. Oliveira, Apr 08 2025: (Start)
E.g.f.: 26*x*exp(x).
a(n) = A005843(A008595(n)). (End)

A317325 Multiples of 25 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 25, 3, 50, 5, 75, 7, 100, 9, 125, 11, 150, 13, 175, 15, 200, 17, 225, 19, 250, 21, 275, 23, 300, 25, 325, 27, 350, 29, 375, 31, 400, 33, 425, 35, 450, 37, 475, 39, 500, 41, 525, 43, 550, 45, 575, 47, 600, 49, 625, 51, 650, 53, 675, 55, 700, 57, 725, 59, 750, 61, 775, 63, 800, 65, 825, 67, 850, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 29-gonal numbers (A303815).
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 29-gonal numbers.

Crossrefs

Cf. A008607 and A005408 interleaved.
Column 25 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14).
Cf. A303815.

Programs

  • GAP
    Flat(List([0..40],n->[25*n,2*n+1])); # Muniru A Asiru, Jul 28 2018
    
  • Magma
    &cat[[25*n, 2*n + 1]: n in [0..30]]; // Vincenzo Librandi, Jul 28 2018
    
  • Maple
    seq(op([25*n,2*n+1]),n=0..40); # Muniru A Asiru, Jul 28 2018
  • Mathematica
    With[{nn=30}, Riffle[25 Range[0, nn], 2 Range[0, nn] + 1]] (* Vincenzo Librandi, Jul 28 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 25*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018

Formula

a(2n) = 25*n, a(2n+1) = 2*n + 1.
G.f.: x*(1 + 25*x + x^2)/((1 - x)^2*(1 + x)^2). - Vincenzo Librandi, Jul 28 2018
a(n) = 2*a(n-2) - a(n-4) for n>3. - Colin Barker, Jul 29 2018
Multiplicative with a(2^e) = 25*2^(e-1), and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 23/2^s). - Amiram Eldar, Oct 26 2023

A305548 a(n) = 27*n.

Original entry on oeis.org

0, 27, 54, 81, 108, 135, 162, 189, 216, 243, 270, 297, 324, 351, 378, 405, 432, 459, 486, 513, 540, 567, 594, 621, 648, 675, 702, 729, 756, 783, 810, 837, 864, 891, 918, 945, 972, 999, 1026, 1053, 1080, 1107, 1134, 1161, 1188, 1215, 1242, 1269, 1296, 1323, 1350, 1377, 1404, 1431, 1458, 1485, 1512
Offset: 0

Views

Author

Eric Chen, Jun 05 2018

Keywords

Crossrefs

For a(n) = k*n: A001489 (k=-1), A000004 (k=0), A001477 (k=1), A005843 (k=2), A008585 (k=3), A008591 (k=9), A008607 (k=25), A252994 (k=26), this sequence (k=27), A135628 (k=28), A195819 (k=29), A249674 (k=30), A135631 (k=31), A174312 (k=32), A044102 (k=36), A085959 (k=37), A169823 (k=60), A152691 (k=64).

Programs

  • Mathematica
    Range[0,2000,27]
  • PARI
    a(n)=27*n

Formula

a(n) = 27*n.
a(n) = A008585(A008591(n)) = A008591(A008585(n)).
G.f.: 27*x/(x-1)^2.
From Elmo R. Oliveira, Apr 10 2025: (Start)
E.g.f.: 27*x*exp(x).
a(n) = 2*a(n-1) - a(n-2). (End)

A351381 Table read by downward antidiagonals: T(n,k) = n*(k+1)^2.

Original entry on oeis.org

4, 9, 8, 16, 18, 12, 25, 32, 27, 16, 36, 50, 48, 36, 20, 49, 72, 75, 64, 45, 24, 64, 98, 108, 100, 80, 54, 28, 81, 128, 147, 144, 125, 96, 63, 32, 100, 162, 192, 196, 180, 150, 112, 72, 36, 121, 200, 243, 256, 245, 216, 175, 128, 81, 40, 144, 242, 300, 324, 320, 294, 252, 200, 144, 90, 44
Offset: 1

Views

Author

Bernard Schott, Mar 28 2022

Keywords

Comments

When m and k are both positive integers and k | m, with m/k = n, then T(n,k) = S(m,k) = (m+k) + (m-k) + (m*k) + (m/k) = S(n*k,k) = n*(k+1)^2, problem proposed by Yakov Perelman.
All terms are nonsquarefree (A013929).

Examples

			Table begins:
  n \ k |   1      2      3      4      5      6      7      8      9     10
  ----------------------------------------------------------------------------
     1  |   4      9     16      25    36     49     64     81    100    121
     2  |   8     18     32      50    72     98    128    162    200    242
     3  |  12     27     48      75   108    147    192    243    300    363
     4  |  16     36     64     100   144    196    256    324    400    484
     5  |  20     45     80     125   180    245    320    405    500    605
     6  |  24     54     96     150   216    294    384    486    600    726
     7  |  28     63    112     175   252    343    448    567    700    847
     8  |  32     72    128     200   288    392    512    648    800    968
     9  |  36     81    144     225   324    441    576    729    900   1089
    10  |  40     90    160     250   360    490    640    810   1000   1210
  ............................................................................
T(3,4) = 75 = 3*(4+1)^2 corresponds to S(3*4,4) = S(12,4) = (12+4) + (12-4) + (12*4) + 12/4 = 75.
S(10,5) = (10+5) + (10-5) + (10*5) + (10/5) = T(10/5,5) = T(2,5) = 72.
		

References

  • I. Perelman, L'Algèbre Récréative, Chapitre IV, Les équations de Diophante, Deux nombres et quatre opérations, Editions en langues étrangères, Moscou, 1959, pp. 101-102.
  • Ya. I. Perelman, Algebra Can Be Fun, Chapter IV, Diophantine Equations, Two numbers and four operations, Mir Publishers Moscow, 1979, pp. 131-132.

Crossrefs

Cf. A013929.
Cf. A000290 \ {0,1} (row 1), A001105 \ {0,2} (row 2), A033428 \ {0,3} (row 3), A016742 \ {0,4} (row 4), A033429 \ {0,5} (row 5), A033581 \ {0,6} (row 6).
Cf. A008586 \ {0} (column 1), A008591 \ {0} (column 2), A008598 \ {0} (column 3), A008607 \ {0} (column 4), A044102 \ {0} (column 5).
Cf. A045991 \ {0} (diagonal).

Programs

  • Mathematica
    T[n_, k_] := n*(k + 1)^2; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Mar 29 2022 *)

Formula

T(n,k) = n*(k+1)^2.
T(n,n) = (n+1)^3 - (n+1)^2 = A045991(n+1) for n >= 1.
G.f.: x*(1 + y)/((1 - x)^2*(1 - y)^3). - Stefano Spezia, Mar 31 2022

A044482 Numbers k such that the string 4,4 occurs in the base-5 representation of k but not of k+1.

Original entry on oeis.org

24, 49, 74, 99, 124, 149, 174, 199, 224, 249, 274, 299, 324, 349, 374, 399, 424, 449, 474, 499, 524, 549, 574, 624, 649, 674, 699, 724, 749, 774, 799, 824, 849, 874, 899, 924, 949, 974, 999, 1024, 1049, 1074, 1099, 1124, 1149
Offset: 1

Views

Author

Keywords

Comments

a(n)+1 is divisible by 25 because the string 4,4 must be at the lower end of the base-5 representation. - Joerg Arndt, Feb 13 2012

Examples

			49 is in the sequence because its base-5 representation, 144, includes 44 as a substring, but the base-5 representation of 50, 200, does not.
599 is not in the sequence because, although it is 4344 in base 5, 600 is 4400 in base 5.
		

Crossrefs

Cf. A008607 (multiples of 25).

Programs

  • Mathematica
    f[n_]:= Length[StringPosition[ToString[FromDigits[IntegerDigits[n,5]]],"44",1]]; Select[Table[n,{n,2000}],f[#]>0&&f[#+1] == 0&] (* Vincenzo Librandi, Feb 12 2012 *)
    SequencePosition[Table[If[SequenceCount[IntegerDigits[n,5],{4,4}]>0,1,0],{n,1200}],{1,0}][[All,1]] (* Harvey P. Dale, Aug 20 2021 *)

A377165 a(n) = 76 + 275*n.

Original entry on oeis.org

76, 351, 626, 901, 1176, 1451, 1726, 2001, 2276, 2551, 2826, 3101, 3376, 3651, 3926, 4201, 4476, 4751, 5026, 5301, 5576, 5851, 6126, 6401, 6676, 6951, 7226, 7501, 7776, 8051, 8326, 8601, 8876, 9151, 9426, 9701, 9976, 10251, 10526, 10801, 11076, 11351, 11626, 11901
Offset: 0

Views

Author

Stefano Spezia, Oct 18 2024

Keywords

Comments

Numbers k such k - 1 is a multiple of 25 and k + 1 is a multiple of 11. See Besso and Lugli, and Matmedia links.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,-1},{76,351},44]

Formula

a(n) = 2*a(n-1) - a(n-2) for n > 1.
G.f.: (76 + 199*x)/(1 - x)^2.
E.g.f.: exp(x)*(76 + 275*x).

A119652 Number of different values of <= n standard American coins (pennies, nickels, dimes and quarters).

Original entry on oeis.org

4, 13, 27, 46, 69, 94, 119, 144, 169, 194, 219, 244, 269, 294, 319, 344, 369, 394, 419, 444, 469, 494, 519, 544, 569, 594, 619, 644, 669, 694, 719, 744, 769, 794, 819, 844, 869, 894, 919, 944, 969, 994, 1019, 1044, 1069, 1094, 1119, 1144, 1169, 1194, 1219
Offset: 1

Views

Author

Tanya Khovanova, Jul 28 2006

Keywords

Examples

			If you have 1 coin you can have 4 different totals: 1, 5, 10 and 25. If you have 2 coins, you can have 10 totals: 2, 6, 10, 11, 15, 20, 26, 30, 35, 50. Notice that the same total appears twice: 10 is one dime and two nickels. Hence a(2) = 13.
		

Crossrefs

Cf. A008607.

Programs

Formula

Conjectures from Colin Barker, Oct 25 2019: (Start)
G.f.: x*(4 + 5*x + 5*x^2 + 5*x^3 + 4*x^4 + 2*x^5) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>6.
a(n) = 25*n-56 for n>4.
(End)
Showing 1-10 of 12 results. Next