cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A244634 a(n) = 27*n^2.

Original entry on oeis.org

0, 27, 108, 243, 432, 675, 972, 1323, 1728, 2187, 2700, 3267, 3888, 4563, 5292, 6075, 6912, 7803, 8748, 9747, 10800, 11907, 13068, 14283, 15552, 16875, 18252, 19683, 21168, 22707, 24300, 25947, 27648, 29403, 31212, 33075, 34992, 36963, 38988, 41067, 43200, 45387
Offset: 0

Views

Author

Vincenzo Librandi, Jul 03 2014

Keywords

Crossrefs

Cf. similar sequences listed in A244630.

Programs

  • Magma
    [27*n^2: n in [0..40]];
    
  • Mathematica
    Table[27 n^2, {n, 0, 40}]
  • PARI
    a(n)=27*n^2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: 27*x*(1 + x)/(1 - x)^3. [corrected by Bruno Berselli, Jul 03 2014]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = 27*A000290(n) = 9*A033428(n) = 3*A016766(n). - Omar E. Pol, Jul 03 2014
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 27*x*(1 + x)*exp(x).
a(n) = n*A305548(n). (End)

A306824 Integer k such that digsum(k) = digsum (k/p(1)) = digsum (k/p(2)) = ... for all prime factors p(i) of k, where digsum(k) = A007953(k) is the digital sum of k.

Original entry on oeis.org

1, 27, 54, 81, 108, 135, 162, 216, 243, 270, 324, 351, 361, 405, 432, 513, 540, 621, 702, 703, 810, 1026, 1053, 1080, 1215, 1242, 1458, 1620, 1728, 1944, 2071, 2079, 2106, 2133, 2160, 2187, 2403, 2413, 2592, 2700, 2701, 2916, 3024, 3051, 3105, 3267, 3321, 4023, 4033, 4050, 4158
Offset: 1

Views

Author

Michel Lagneau, Mar 12 2019

Keywords

Comments

a(n) == 0 or 1 (mod 9). If a(n) == 0 (mod 9), a(n) == 0 (mod 27).

Examples

			4158 = 2*3^3*7*11 is in the sequence because 4 + 1 + 5 + 8 = 18, and:
4158/2 = 2079 and digsum(2079) = 18;
4158/3 = 1386 and digsum(1386) = 18;
4158/7 = 594 and digsum(594) = 18;
4158/11 = 378 and digsum(378) = 18.
		

Crossrefs

Cf. A007953, A305548, A306761 (a subsequence).

Programs

  • Maple
    with(numtheory):nn:=4200:
      for k from 1 to nn do:
         d:=factorset(k):n1:=nops(d):it:=0:
         b:=convert(k, base, 10):n2:=nops(b):s:=sum(‘b[i]’, ‘i’=1..n2):
          for i from 1 to n1 do:
            x:=k/d[i]:b1:=convert(x, base, 10):n3:=nops(b1):
            s1:=sum(‘b1[i]’, ‘i’=1..n3):
            if s1=s
             then
             it:=it+1:
             else
            fi:
          od:
           if it=n1
            then
            printf(`%d, `,k):
           else
          fi:
    od:
  • Mathematica
    sod[n_] := Total@IntegerDigits@n; Select[Range[1, 5000], {sod[#]} == Union[sod /@ (#/First /@ FactorInteger[#])] &] (* Giovanni Resta, Mar 12 2019 *)
  • PARI
    isok(k) = {my(pf = factor(k)[,1]~, sd = sumdigits(k)); for (i=1, #pf, if (sumdigits(k/pf[i]) != sd, return (0));); return (1);} \\ Michel Marcus, Mar 12 2019
Showing 1-2 of 2 results.