cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259750 Numbers that are congruent to {14, 22} mod 24.

Original entry on oeis.org

14, 22, 38, 46, 62, 70, 86, 94, 110, 118, 134, 142, 158, 166, 182, 190, 206, 214, 230, 238, 254, 262, 278, 286, 302, 310, 326, 334, 350, 358, 374, 382, 398, 406, 422, 430, 446, 454, 470, 478, 494, 502, 518, 526, 542, 550, 566, 574, 590, 598, 614, 622, 638
Offset: 1

Views

Author

Keywords

Comments

Original name: Numbers n such that n/A259748(n) = 2.

Crossrefs

Programs

  • Mathematica
    A[n_] := A[n] = Sum[a b, {a, 1,  n}, {b, a + 1, n}] ; Select[Range[600], Mod[A[#], #]/# == 1/2 & ]
  • PARI
    vector(100, n, 2*(6*n-(-1)^n)) \\ Altug Alkan, Oct 23 2015
    
  • PARI
    Vec(2*x*(7+4*x+x^2)/((1-x)^2*(1+x)) + O(x^100)) \\ Colin Barker, Aug 26 2016

Formula

A259748(a(n))/a(n) = 1/2.
a(n) = 2*A168489(n) - Danny Rorabaugh, Oct 22 2015
From Colin Barker, Aug 26 2016: (Start)
a(n) = a(n-1)+a(n-2)-a(n-3) for n>3.
G.f.: 2*x*(7+4*x+x^2) / ((1-x)^2*(1+x)).
(End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/24 - log(2+sqrt(3))/(4*sqrt(3)). - Amiram Eldar, Dec 31 2021
E.g.f.: 2*(1 + 6*x*exp(x) - exp(-x)). - David Lovler, Sep 06 2022

Extensions

Better name from Danny Rorabaugh, Oct 22 2015