A259750 Numbers that are congruent to {14, 22} mod 24.
14, 22, 38, 46, 62, 70, 86, 94, 110, 118, 134, 142, 158, 166, 182, 190, 206, 214, 230, 238, 254, 262, 278, 286, 302, 310, 326, 334, 350, 358, 374, 382, 398, 406, 422, 430, 446, 454, 470, 478, 494, 502, 518, 526, 542, 550, 566, 574, 590, 598, 614, 622, 638
Offset: 1
Links
- Danny Rorabaugh, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
A[n_] := A[n] = Sum[a b, {a, 1, n}, {b, a + 1, n}] ; Select[Range[600], Mod[A[#], #]/# == 1/2 & ]
-
PARI
vector(100, n, 2*(6*n-(-1)^n)) \\ Altug Alkan, Oct 23 2015
-
PARI
Vec(2*x*(7+4*x+x^2)/((1-x)^2*(1+x)) + O(x^100)) \\ Colin Barker, Aug 26 2016
Formula
A259748(a(n))/a(n) = 1/2.
a(n) = 2*A168489(n) - Danny Rorabaugh, Oct 22 2015
From Colin Barker, Aug 26 2016: (Start)
a(n) = a(n-1)+a(n-2)-a(n-3) for n>3.
G.f.: 2*x*(7+4*x+x^2) / ((1-x)^2*(1+x)).
(End)
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/24 - log(2+sqrt(3))/(4*sqrt(3)). - Amiram Eldar, Dec 31 2021
E.g.f.: 2*(1 + 6*x*exp(x) - exp(-x)). - David Lovler, Sep 06 2022
Extensions
Better name from Danny Rorabaugh, Oct 22 2015
Comments